Skip to main content
Log in

Novel candidate genes for environmental stresses response in Synechocystis sp. PCC 6803 revealed by machine learning algorithms

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cyanobacteria have developed acclimation strategies to adapt to harsh environments, making them a model organism. Understanding the molecular mechanisms of tolerance to abiotic stresses can help elucidate how cells change their gene expression patterns in response to stress. Recent advances in sequencing techniques and bioinformatics analysis methods have led to the discovery of many genes involved in stress response in organisms. The Synechocystis sp. PCC 6803 is a suitable microorganism for studying transcriptome response under environmental stress. Therefore, for the first time, we employed two effective feature selection techniques namely and support vector machine recursive feature elimination (SVM-RFE) and LASSO (Least Absolute Shrinkage Selector Operator) to pinpoint the crucial genes responsive to environmental stresses in Synechocystis sp. PCC 6803. We applied these algorithms of machine learning to analyze the transcriptomic data of Synechocystis sp. PCC 6803 under distinct conditions, encompassing light, salt and iron stress conditions. Seven candidate genes namely sll1862, slr0650, sll0760, slr0091, ssl3044, slr1285, and slr1687 were selected by both LASSO and SVM-RFE algorithms. RNA-seq analysis was performed to validate the efficiency of our feature selection approach in selecting the most important genes. The RNA-seq analysis revealed significantly high expression for five genes namely sll1862, slr1687, ssl3044, slr1285, and slr0650 under ion stress condition. Among these five genes, ssl3044 and slr0650 could be introduced as new potential candidate genes for further confirmatory genetic studies, to determine their roles in their response to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data underlying this article are available in the article.

References

  1. Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, Wilmotte A, Javaux EJ (2019) Cyanobacteria evolution: Insight from the fossil record. Free Radic Biol Med 20(140):206–223

    Article  Google Scholar 

  2. Tashyreva D, Elster J (2016) Annual Cycles of Two Cyanobacterial Mat Communities in Hydro-Terrestrial Habitats of the High Arctic. Microb Ecol 71(4):887–900

    Article  CAS  PubMed  Google Scholar 

  3. Dabravolski SA, Isayenkov SV (2022) Metabolites Facilitating Adaptation of Desert Cyanobacteria to Extremely Arid Environments. Plants (Basel) 11(23):3225

    Article  CAS  PubMed  Google Scholar 

  4. Rachedi R, Foglino M, Latifi A (2020) Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life (Basel) 10(12):312

    CAS  PubMed  Google Scholar 

  5. Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308(Pt 1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yadav P, Singh RP, Rana S, Joshi D, Kumar D, Bhardwaj N, Gupta RK, Kumar A (2022) Mechanisms of Stress Tolerance in Cyanobacteria under Extreme Conditions. Stresses 2:531–549

    Article  Google Scholar 

  7. Abo-Shady AM, Osman MEH, Gaafar RM, Ismail GA, El-Nagar MMF (2023) Cyanobacteria as a Valuable Natural Resource for Improved Agriculture, Environment, and Plant Protection. Water Air Soil Pollut 234(5):313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, Thakare RP, Banday S, Mishra AK, Das G, Malonia SK (2023) Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel) 12(7):997

    CAS  PubMed  Google Scholar 

  9. Nagao R, Yokono M, Ueno Y, Suzuki T, Kato K, Kato KH, Tsuboshita N, Jiang TY, Dohmae N, Shen JR, Ehira S, Akimoto S (1862) (2021) Molecular organizations and function of iron-stress-induced-A protein family in Anabaena sp. PCC 7120. Biochim Biophys Acta Bioenerg 1:148327

    Google Scholar 

  10. Mironov KS, Sinetova MA, Shumskaya M, Los DA (2019) Universal Molecular Triggers of Stress Responses in Cyanobacterium Synechocystis. Life (Basel) 9(3):67

    CAS  PubMed  Google Scholar 

  11. Shen PC, Hour AL, Liu LD (2017) Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis. Bot Stud 58(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yoshikawa K, Ogawa K, Toya Y, Akimoto S, Matsuda F, Shimizu H (2021) Mutations in hik26 and slr1916 lead to high-light stress tolerance in Synechocystis sp. PCC6803. Commun Biol 4(1):343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hakkila K, Valev D, Antal T, TyystjïRvi E, TyystjïRvi T (2019) Group 2 Sigma Factors are Central Regulators of Oxidative Stress Acclimation in Cyanobacteria. Plant Cell Physiol 60(2):436–447

    Article  CAS  PubMed  Google Scholar 

  14. Chang LC, Lin HM, Sibille E, Tseng GC (2013) Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline. BMC Bioinformatics 21(14):368

    Article  Google Scholar 

  15. Liang Y, Zhang F, Wang J, Joshi T, Wang Y, Xu D (2011) Prediction of drought-resistant genes in Arabidopsis thaliana using SVM-RFE. PLoS ONE 6(7):e21750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abusamra H (2013) A Comparative Study of Feature Selection and Classification Methods for Gene Expression Data of Glioma. Procedia Computer Science 23:5–14

    Article  Google Scholar 

  17. Liu S, Xu C, Zhang Y, Liu J, Yu B, Liu X, Dehmer M (2018) Feature selection of gene expression data for cancer classification using double RBF-kernels. BMC Bioinformatics 19(1):396. https://doi.org/10.1186/s12859-018-2400-2

  18. Chandra B, Gupta M (2011) An efficient statistical feature selection approach for classification of gene expression data. J Biomed Inform 44(4):529–535

    Article  CAS  PubMed  Google Scholar 

  19. Chen CW, Tsai TH, Chang FR, Lin WC (2020) Ensemble feature selection in medical datasets: Combining filter, wrapper, and embedded feature selection results. Expert Syst 37(5):12–28

    Article  Google Scholar 

  20. Jiménez-Cordero A, Morales JM, Pineda S (2021) A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification. Eur J Oper Res 293(1):24–35

    Article  Google Scholar 

  21. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 286(5439):531–7

    Article  CAS  PubMed  Google Scholar 

  22. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W (2018) Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genom Proteom 15(1):41–51

    CAS  Google Scholar 

  23. Chen D, Liu J, Zang L, Xiao T, Zhang X, Li Z, Zhu H, Gao W, Yu X (2022) Integrated Machine Learning and bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients. Int J Biol Sci 18(1):360–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karimi-Fard A, Saidi A, Tohidfar M, Saxena A (2023) Identification of key responsive genes to some abiotic stresses in Arabidopsis thaliana at the seedling stage based on coupling computational biology methods and machine learning. J Appl Biotechnol Rep 10(3):1079–1090

    Google Scholar 

  25. Kidd AC, McGettrick M, Tsim S, Halligan DL, Bylesjo M, Blyth KG (2018) Survival prediction in mesothelioma using a scalable Lasso regression model: instructions for use and initial performance using clinical predictors. BMJ Open Respir Res 5(1):e000240

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28(6):882–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharon S, Salomon E, Kranzler C, Lis H, Lehmann R, Georg J, Zer H, Hess WR, Keren N (1837) (2014) The hierarchy of transition metal homeostasis: iron controls manganese accumulation in a unicellular cyanobacterium. Biochim Biophys Acta 12:1990–1997

    Google Scholar 

  28. Krynická V, Georg J, Jackson PJ, Dickman MJ, Hunter CN, Futschik ME, Hess WR, Komenda J (2019) Depletion of the FtsH1/3 Proteolytic Complex Suppresses the Nutrient Stress Response in the Cyanobacterium Synechocystis sp strain PCC 6803. Plant Cell 31(12):2912–2928

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ogawa K, Yoshikawa K, Matsuda F, Toya Y, Shimizu H (2018) Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions. J Biosci Bioeng 126(5):596–602

    Article  CAS  PubMed  Google Scholar 

  30. Yoshikawa K, Ogawa K, Toya Y, Akimoto S, Matsuda F, Shimizu H (2021) Mutations in hik26 and slr1916 lead to high-light stress tolerance in Synechocystis sp. PCC6803. Commun Biol 4(1):343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klähn S, Mikkat S, Riediger M, Georg J, Hess WR, Hagemann M (2021) Integrative analysis of the salt stress response in cyanobacteria. Biol Direct 16(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics 17(6):509–519

    Article  CAS  PubMed  Google Scholar 

  33. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

  34. Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB (2010) Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC Syst Biol 2(4):105

    Article  CAS  Google Scholar 

  35. Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 100(15):9061–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kopf M, Klähn S, Scholz I, Matthiessen JK, Hess WR, Voß B (2014) Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 21(5):527–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W (2014) A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803. Mol Cell Proteomics 13(12):3519–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Artz JH, Tokmina-Lukaszewska M, Mulder DW, Lubner CE, Gutekunst K, Appel J, Bothner B, Boehm M, King PW (2020) The structure and reactivity of the HoxEFU complex from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 295(28):9445–9454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang HE, Ho MH, Chang H, Chao HY, Ger MJ (2020) Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). Plant Physiol Biochem 155:136–146

    Article  CAS  PubMed  Google Scholar 

  40. Huh SU, Lee IJ, Ham BK, Paek KH (2012) Nicotiana tabacum Tsip1-interacting ferredoxin 1 affects biotic and abiotic stress resistance. Mol Cells 34(1):43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    Article  CAS  PubMed  Google Scholar 

  42. Li H, Sherman LA (2002) Characterization of Synechocystis sp. strain PCC 6803 and Δnbl mutants under nitrogen-deficient conditions. Arch Microbiol 178:256–266

    Article  CAS  PubMed  Google Scholar 

  43. Singh AK, Elvitigala T, Bhattacharyya-Pakrasi M, Aurora R, Ghosh B, Pakrasi HB (2008) Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. Plant Physiol 148(1):467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shoumskaya MA, Paithoonrangsarid K, Kanesaki Y, Los DA, Zinchenko VV, Tanticharoen M, Suzuki I, Murata N (2005) Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in synechocystis. J Biol Chem 280(22):21531–8

    Article  CAS  PubMed  Google Scholar 

  45. Paithoonrangsarid K, Shoumskaya MA, Kanesaki Y, Satoh S, Tabata S, Los DA, Zinchenko VV, Hayashi H, Tanticharoen M, Suzuki I, Murata N (2004) Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. J Biol Chem 279(51):53078–86

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki I, Kanesaki Y, Hayashi H, Hall JJ, Simon WJ, Slabas AR, Murata N (2005) The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis. Plant Physiol 138(3):1409–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV (2010) Stress sensors and signal transducers in cyanobacteria. Sensors (Basel) 10(3):2386–2415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors announce that this work has not received any funds from any institution.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Saidi or Masoud TohidFar.

Ethics declarations

Ethical approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gisele Monteiro

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi-Fard, A., Saidi, A., TohidFar, M. et al. Novel candidate genes for environmental stresses response in Synechocystis sp. PCC 6803 revealed by machine learning algorithms. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01338-6

Keywords

Navigation