Skip to main content

Advertisement

Log in

Trends in Antarctic soil fungal research in the context of environmental changes

  • Environmental Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antarctic soils represent one of the most pristine environments on Earth, where highly adapted and often endemic microbial species withstand multiple extremes. Specifically, fungal diversity is extremely low in Antarctic soils and species distribution and diversity are still not fully characterized in the continent. Despite the unique features of this environment and the international interest in its preservation, several factors pose severe threats to the conservation of inhabiting ecosystems. In this light, we aimed to provide an overview of the effects on fungal communities of the main changes endangering the soils of the continent. Among these, the increasing human presence, both for touristic and scientific purposes, has led to increased use of fuels for transport and energy supply, which has been linked to an increase in unintentional environmental contamination. It has been reported that several fungal species have evolved cellular processes in response to these soil contamination episodes, which may be exploited for restoring contaminated areas at low temperatures. Additionally, the effects of climate change are another significant threat to Antarctic ecosystems, with the expected merging of previously isolated ecosystems and their homogenization. A possible reduction of biodiversity due to the disappearance of well-adapted, often endemic species, as well as an increase of biodiversity, due to the spreading of non-native, more competitive species have been suggested. Despite some studies describing the specialization of fungal communities and their correlation with environmental parameters, our comprehension of how soil communities may respond to these changes remains limited. The majority of studies attempting to precisely define the effects of climate change, including in situ and laboratory simulations, have mainly focused on the bacterial components of these soils, and further studies are necessary, including the other biotic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. FAO, GSBI ITPS, CBD EC (2020) State of knowledge of soil biodiversity. Status, challenges and potentialities, Report 2020. Rome, FAO. https://doi.org/10.4060/cb1928en

  2. Flint EA, Stout JD (1960) Microbiology of some soils from Antarctica. Nature 188:767–768. https://doi.org/10.1038/188767b0

    Article  CAS  PubMed  Google Scholar 

  3. Tubaki K (1961) Notes on some fungi and yeasts from Antarctica. Antarct Rec Ser E 11:161–162

    Google Scholar 

  4. Ugolini FC, Starkey RL (1966) Soils and micro-organisms from Mount Erebus. Antarctica Nat 211:440–441. https://doi.org/10.1038/211440a0

    Article  Google Scholar 

  5. Onofri S, Zucconi L, Tosi S (2007) Continental Antarctic fungi. IHW-

  6. Rosa LH, Zani CL, Cantrell CL et al (2019) Fungi in Antarctica: Diversity, Ecology, effects of Climate Change, and Bioprospection for Bioactive compounds. In: Rosa L (ed) Fungi of Antarctica. Springer, Cham. https://doi.org/10.1007/978-3-030-18367-7_1

    Chapter  Google Scholar 

  7. Campbell IB, Claridge GGC, Balks MR (1994) The effect of human activities on moisture content of soils and underlying permafrost from the McMurdo Sound region, Antarctica. Antarct Sci 6(3):307–314

    Article  Google Scholar 

  8. Tin T, Fleming ZL, Hughes KA et al (2009) Impacts of local human activities on the Antarctic environment. Antarct Sci 21(1):3–33

    Article  Google Scholar 

  9. O’Neill TA (2017) Protection of Antarctic soil environments: a review of the current issues and future challenges for the environmental protocol. Environ Sci Policy 76:153–164

    Article  Google Scholar 

  10. IPCC (2023) Summary for policymakers. In: Lee H, Romero J (eds) Climate Change 2023: synthesis report. Contribution of Working groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core writing Team. IPCC, Geneva, Switzerland, pp 1–34. doi: https://doi.org/10.59327/IPCC/AR6-9789291691647.001

    Chapter  Google Scholar 

  11. Lim ZS, Wong RR, Wong CY et al (2021) Bibliometric analysis of research on diesel pollution in Antarctica and a review on remediation techniques. Appl Sci 11(3):1123. https://doi.org/10.3390/app11031123

    Article  CAS  Google Scholar 

  12. Lin J, Rayhan AS, Wang Y et al (2021) Distribution and contamination assessment of heavy metals in soils and sediments from the Fildes Peninsula and Ardley Island in King George Island, Antarctica. Polar Res 40. https://doi.org/10.33265/polar.v40.5270

  13. Luarte T, Gómez-Aburto VA, Poblete-Castro I et al (2023) Levels of persistent organic pollutants (POPs) in the Antarctic atmosphere over time (1980 to 2021) and estimation of their atmospheric half-lives. Atmospheric Chem Phys 23:8103–8118. https://doi.org/10.5194/acp-23-8103-2023

    Article  CAS  Google Scholar 

  14. Rossi S (2022) A journey in Antarctica: exploring the future of the white continent. Springer Nature Publishing, Cham, Switzerland, p 198

    Book  Google Scholar 

  15. Bargagli R, Rota E (2024) Environmental contamination and climate change in Antarctic ecosystems: an updated overview. Environ Sci: Adv. https://doi.org/10.1039/d3va00113j

    Article  Google Scholar 

  16. Aislabie J, Fraser R, Duncan S, Farrell RL (2001) Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol 24:308–313. https://doi.org/10.1007/s003000000210

    Article  Google Scholar 

  17. Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38(5):1265–1274. https://doi.org/10.1021/es0305149

    Article  CAS  PubMed  Google Scholar 

  18. Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica: studies in the world’s coldest and driest desert have implications for the Mars biological program. Sci 176(4032):242–245. https://www.jstor.org/stable/1733955

    Article  CAS  Google Scholar 

  19. Hughes KA, Bridge P, Clark MS (2007) Tolerance of Antarctic soil fungi to hydrocarbons. Sci Tot Environ 372(2–3):539–548. https://doi.org/10.1016/j.scitotenv.2006.09.016

    Article  CAS  Google Scholar 

  20. Ferrari BC, Zhang C, Van Dorst J (2011) Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-antarctic soil through cultivation using both a high and a low nutrient media approach. Front Microbiol 2:217. https://doi.org/10.3389/fmicb.2011.00217

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kochkina GA, Ivanushkina NE, Lupachev AV et al (2019) Diversity of mycelial fungi in natural and human-affected Antarctic soils. Polar Biol 42:47–64. https://doi.org/10.1007/s00300-018-2398-y

    Article  Google Scholar 

  22. Vlasov DY, Kirtsideli IY, Abakumov EV et al (2020) Anthropogenic invasion of micromycetes to undisturbed ecosystems of the Larsemann Hills Oasis (East Antarctica). Russ J Biol Invasions 11:208–215. https://doi.org/10.1134/S2075111720030121

    Article  Google Scholar 

  23. Hamamura N, Olson SH, Ward DM, Inskeep WP (2006) Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol 72:6316–6324. https://doi.org/10.1128/AEM.01015-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuc V, Vázquez S, Hernández E et al (2019) Hydrocarbon-contaminated Antarctic soil: changes in bacterial community structure during the progress of enrichment cultures with different n-alkanes as substrate. Polar Biol 42:1157–1166. https://doi.org/10.1007/s00300-019-02508-1

    Article  Google Scholar 

  25. Silva JB, Centurion VB, Duarte AW et al (2022) Unravelling the genetic potential for hydrocarbon degradation in the sediment microbiome of Antarctic islands. FEMS Microbiol Ecol 99(1). https://doi.org/10.1093/femsec/fiac143

  26. Kerry E (1990) Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination, in the Vestfold Hills and MacRobertson Land. Antarctica Polar Biol 10:423–430. https://doi.org/10.1007/BF00233690

    Article  Google Scholar 

  27. Wong RR, Lim ZS, Shaharuddin NA et al (2021) Diesel in Antarctica and a bibliometric study on its indigenous microorganisms as remediation agent. Int J Environ Res Public Health 18(4):1512. https://doi.org/10.3390/ijerph18041512

    Article  PubMed  PubMed Central  Google Scholar 

  28. Martorell MM, Ruberto LAM, de Castellanos LIF, Cormack WPM (2019) Bioremediation abilities of Antarctic fungi. In: Tiquia-Arashiro SM, Grube M (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance Springer Cham, pp 517–534. https://doi.org/10.1007/978-3-030-19030-9

  29. Line MA (1988) Microbial flora of some soils of Mawson Base and the Vestfold Hills. Antarctica Polar Biol 8:421–427. https://doi.org/10.1007/BF00264718

    Article  Google Scholar 

  30. Canini F, Geml J, Buzzini P et al (2021) Growth forms and functional guilds distribution of soil fungi in coastal versus inland sites of Victoria Land. Antarctica Biology 10(4):320. https://doi.org/10.3390/biology10040320

    Article  CAS  PubMed  Google Scholar 

  31. Newsham KK, Davey ML, Hopkins DW, Dennis PG (2021) Regional diversity of maritime Antarctic soil fungi and predicted responses of guilds and growth forms to climate change. Front Microbiol 11:615659. https://doi.org/10.3389/fmicb.2020.615659

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang C, Sirijovski N, Adler L, Ferrari BC (2019) Exophiala macquariensis sp. nov., a cold adapted black yeast species recovered from a hydrocarbon contaminated sub-antarctic soil. Fungal Biol 123(2):151–158. https://doi.org/10.1016/j.funbio.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  33. Isola D, Selbmann L, de Hoog GS et al (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. https://doi.org/10.1007/s11046-013-9635-2

    Article  PubMed  Google Scholar 

  34. Isola D, Scano A, Orrù G et al (2021) Hydrocarbon-contaminated sites: is there something more than Exophiala Xenobiotica? New insights into black fungal diversity using the long cold incubation method. J Fungi 7(10):817. https://doi.org/10.3390/jof7100817

    Article  Google Scholar 

  35. Isola D, Prigione VP, Zucconi L et al (2022) Knufia obscura sp. nov. and knufia victoriae sp. nov., two new species from extreme environments. Int J Syst Evol Micr 72(10):005530. https://doi.org/10.1099/ijsem.0.005530

    Article  CAS  Google Scholar 

  36. Ogaki MB (2021) Antarctic Marine Fungi and their potential application in Bioremediation. In: Vala AK, Dudhagara DR, Dave BP (eds) Marine Microbial Bioremediation. CRC, pp 152–170

  37. Primitz VJ, Vázquez S, Ruberto L et al (2021) Bioremediation of hydrocarbon-contaminated soil from Carlini Station, Antarctica: effectiveness of different nutrient sources as biostimulation agents. Polar Biol 44:289–303. https://doi.org/10.1007/s00300-020-02787-z

    Article  Google Scholar 

  38. Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188. https://doi.org/10.1007/s003000050025

    Article  Google Scholar 

  39. Abdulrasheed M, Zakaria N, Roslee AFA et al (2020) Biodegradation of diesel oil by cold-adapted bacterial strains of Arthrobacter spp. Antarctica Antarct Sci 32(5):341–353. https://doi.org/10.1017/S0954102020000206

    Article  Google Scholar 

  40. Jesus HED, Carreira RS, Paiva SS et al (2021) Microbial succession under freeze–thaw events and its potential for hydrocarbon degradation in nutrient-amended antarctic soil. Microorganisms 9(3):609. https://doi.org/10.3390/microorganisms9030609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kozlovsky AG, Kochkina GA, Zhelifonova VP et al (2020) Secondary metabolites of the genus Penicillium from undisturbed and anthropogenically altered Antarctic habitats. Folia Microbiol 65:95–102. https://doi.org/10.1007/s12223-019-00708-0

    Article  CAS  Google Scholar 

  42. Govarthanan M, Fuzisawa S, Hosogai T, Chang YC (2017) Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Adv 7(34):20716–20723. https://doi.org/10.1039/C6RA28687A

    Article  CAS  Google Scholar 

  43. Chang YC, Onodera R, Reddy MV (2020) Degradation of 4-tert-butylphenol in contaminated soil using Penicillium sp. CHY-2 isolated from pristine Antarctica. Water-Energy Nexus 3:11–14. https://doi.org/10.1016/j.wen.2020.03.002

    Article  Google Scholar 

  44. Stoyanova K, Gerginova M, Dincheva I et al (2022) Biodegradation of naphthalene and anthracene by aspergillus glaucus strain isolated from Antarctic soil. Processes 10(5):873. https://doi.org/10.3390/pr10050873

    Article  CAS  Google Scholar 

  45. Klánová J, Matykiewiczová N, Máčka Z et al (2008) Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environ Pollut 152(2):416–423. https://doi.org/10.1016/j.envpol.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  46. Wang D, Ma H, Chen Z, Shi G (2022) Occurrences and possible sources of persistent organic pollutants (POPs) in ice-free area soils in East Antarctica. CATENA 212:106083. https://doi.org/10.1016/j.catena.2022.106083

    Article  CAS  Google Scholar 

  47. Subramaniam K, Ahmad SA, Shaharuddin NA (2020) Mini review on phenol biodegradation in Antarctica using native microorganisms. Asia Pac J Mol Biol Biotechnol 28:77–89. https://doi.org/10.35118/apjmbb.2020.028.1.08

    Article  Google Scholar 

  48. Gerginova M, Manasiev J, Yemendzhiev H et al (2013) Biodegradation of phenol by Antarctic strains of aspergillus fumigatus. Z Naturforsch C J Biosci 68(9–10):384–393. https://doi.org/10.1515/znc-2013-9-1006

    Article  CAS  PubMed  Google Scholar 

  49. Fernández PM, Martorell MM, Blaser MG et al (2017) Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 21:445–457. https://doi.org/10.1007/s00792-017-0915-5

    Article  CAS  PubMed  Google Scholar 

  50. Alexieva Z, Yemendzhiev H, Tossi S al (2012) Growth of fungal strains isolated from Livingston Island on phenolic compounds-biodegradation potential. In: Mendez-Vilas A (ed) Microbes in Applied Research: current advances and challenges. World Scientific publishing Co., pp 131–134

  51. Rota E, Bergami E, Corsi I, Bargagli R (2022) Macro-and microplastics in the Antarctic environment: ongoing assessment and perspectives. Environments 9(7):93. https://doi.org/10.3390/environments9070093

    Article  Google Scholar 

  52. Bergami E, Rota E, Caruso T et al (2020) Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biol Lett 16(6):20200093. https://doi.org/10.1098/rsbl.2020.0093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aves AR, Revell LE, Gaw S et al (2022) First evidence of microplastics in Antarctic snow. Cryosphere 16(6):2127–2145. https://doi.org/10.5194/tc-16-2127-2022

    Article  Google Scholar 

  54. Perfetti-Bolaño A, Araneda A, Muñoz K, Barra RO (2022) Occurrence and distribution of microplastics in soils and intertidal sediments at Fildes Bay, Maritime Antarctica. Front Mar Sci 8:774055. https://doi.org/10.3389/fmars.2021.774055

    Article  Google Scholar 

  55. Kelly A, Lannuzel D, Rodemann T, Meiners KM, Auman HJ (2020) Microplastic contamination in East Antarctic Sea Ice. Mar Pollut Bull 154:111130. https://doi.org/10.1016/j.marpolbul.2020.111130

    Article  CAS  PubMed  Google Scholar 

  56. Lacerda ALDF, Proietti MC, Secchi ER, Taylor JD (2020) Diverse groups of fungi are associated with plastics in the surface waters of the western south Atlantic and the Antarctic Peninsula. Mol Ecol 29:1903–1918. https://doi.org/10.1111/mec.15444

    Article  PubMed  Google Scholar 

  57. Srikanth M, Sandeep TSRS, Sucharitha K, Godi S (2022) Biodegradation of plastic polymers by fungi: a brief review. Bioresour Bioprocess 9(1):42. https://doi.org/10.1186/s40643-022-00532-4

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee JR, Raymond B, Bracegirdle TJ et al (2017) Climate change drives expansion of Antarctic ice-free habitat. Nature 547(7661):49–54. https://doi.org/10.1038/nature22996

    Article  CAS  PubMed  Google Scholar 

  59. Convey P, Peck LS (2019) Antarctic environmental change and biological responses. Sci Adv 5(11):eaaz0888. https://doi.org/10.1126/sciadv.aaz088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. IPCC (2019) In: Pörtner HO, Roberts DC, Masson-Delmotte V et al (eds) IPCC Special Report on the Ocean and Cryosphere in a changing climate. Cambridge University Press, Cambridge, UK and New York, USA, p 755. https://doi.org/10.1017/9781009157964.

    Book  Google Scholar 

  61. Francelino MR, Schaefer C, Skansi MDLM et al (2021) P WMO evaluation of two extreme high temperatures occurring in February 2020 for the Antarctic Peninsula region. BAMS 102(11):E2053-E2061. https://doi.org/10.1175/BAMS-D-21-0040.1

  62. Clem KR, Fogt RL, Turner J et al (2020) Record warming at the South Pole during the past three decades. Nat Clim Change 10:762–770. https://doi.org/10.1038/s41558-020-0815-z

    Article  Google Scholar 

  63. Burton-Johnson A, Black M, Fretwell PT, Kaluza-Gilbert J (2016) An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10(4):1665–1677. https://doi.org/10.5194/tc-10-1665-2016

    Article  Google Scholar 

  64. Dragone NB, Diaz MA, Hogg ID et al (2021) Exploring the boundaries of microbial habitability in soil. JGR Biogeosciences 126(6). https://doi.org/10.1029/2020JG006052. e2020JG006052

  65. Connell L, Redman R, Craig S, Rodriguez R (2006) Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38(10):3083–3094. https://doi.org/10.1016/j.soilbio.2006.02.016

    Article  CAS  Google Scholar 

  66. Canini F, Geml J, D’Acqui LP et al (2020) Exchangeable cations and pH drive diversity and functionality of fungal communities in biological soil crusts from coastal sites of Victoria Land, Antarctica. Fungal Ecol 45:100923. https://doi.org/10.1016/j.funeco.2020.100923

    Article  Google Scholar 

  67. Canini F, Geml J, D’Acqui LP et al (2021a) Fungal diversity and functionality are driven by soil texture in Taylor Valley, Antarctica. Fungal Ecol 50:101041. https://doi.org/10.1016/j.funeco.2021.101041

    Article  Google Scholar 

  68. Levy JS, Fountain AG, Obryk MK et al (2018) Decadal topographic change in the McMurdo Dry valleys of Antarctica: Thermokarst subsidence, glacier thinning, and transfer of water storage from the cryosphere to the hydrosphere. Geomorphology 323:80–97. https://doi.org/10.1016/j.geomorph.2018.09.012

    Article  Google Scholar 

  69. Convey P, Coulson SJ, Worland MR, Sjöblom A (2018) The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol 41:1587–1605. https://doi.org/10.1007/s00300-018-2299-0

    Article  Google Scholar 

  70. Cucini C, Nardi F, Magnoni L et al (2022) Microhabitats, macro-differences: a survey of temperature records in Victoria Land terrestrial and freshwater environments. Antarct Sci 34(3):256–265. https://doi.org/10.1017/S0954102022000050

    Article  Google Scholar 

  71. Canini F, Borruso L, Newsham KK et al (2023) Wide divergence of fungal communities inhabiting rocks and soils in a hyper-arid Antarctic desert. Environ Microbiol 25:3671–3682. https://doi.org/10.1111/1462-2920.16534

    Article  PubMed  Google Scholar 

  72. Canini F, Byron JA, D’Acqui LP et al (2024) Antarctic Rock and Soil Microbiomes: Shared Taxa, Selective Pressures, and Extracellular DNA Effects. Geoderma (under revision)

  73. Walton DWH, Kennicutt MC, Summerhayes CP (2015) Antarctic Scientific collaboration: the role of the SCAR. In: Liggett D, Storey B, Cook Y, Meduna V (eds) Exploring the last continent: an introduction to Antarctica. Springer, pp 573–588

  74. Gutt J, Isla E, Xavier JC et al (2021) Antarctic ecosystems in transition–life between stresses and opportunities. Biol Rev 96(3):798–821. https://doi.org/10.1111/brv.12679

    Article  PubMed  Google Scholar 

  75. Horrocks CA, Newsham KK, Cox F et al (2020) Predicting climate change impacts on maritime Antarctic soils: a space-for-time substitution study. Soil Biol Biochem 141:107682. https://doi.org/10.1016/j.soilbio.2019.107682

    Article  CAS  Google Scholar 

  76. Cannone N, Malfasi F, Favero-Longo SE et al (2022) Acceleration of climate warming and plant dynamics in Antarctica. Curr Biol 32(7):1599–1606e2. https://doi.org/10.1016/j.cub.2022.01.074

    Article  CAS  PubMed  Google Scholar 

  77. Koerich G, Fraser CI, Lee CK et al (2023) Forecasting the future of life in Antarctica. Trends Ecol Evol 38(1):24–34. https://doi.org/10.1016/j.tree.2022.07.009

    Article  PubMed  Google Scholar 

  78. Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with < 5% soil moisture. Soil Biol Biochem 38(10):3107–3119. https://doi.org/10.1016/j.soilbio.2006.01.014

    Article  CAS  Google Scholar 

  79. Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ microbiol 10(9):2223–2235. https://doi.10.1016/j.funbio.2018.11.011

  80. Melick DR, Bolter M, Moller R (1994) Rates of soluble carbohydrate utilization in soils from the Windmill islands Oasis, Wilkes Land, continental Antarctica. Polar Biol 14:59–64. https://doi.org/10.1007/BF00240274

    Article  Google Scholar 

  81. Collins GE, Hogg ID, Convey P et al (2019) Spatial and temporal scales matter when assessing the species and genetic diversity of springtails (Collembola) in Antarctica. Front Ecol Evol 7:76. https://doi.org/10.3389/fevo.2019.00076

    Article  Google Scholar 

  82. Chwedorzewska KJ, Giełwanowska I, Olech M et al (2015) Poa annua L. in the maritime Antarctic: an overview. Polar Rec 51(6):637–643. https://doi.org/10.1017/S0032247414000916

    Article  Google Scholar 

  83. Cowan DA, Chown SL, Convey P et al (2011) Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol 19(11):540–548. https://doi.org/10.1016/j.tim.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  84. Coleine C, Stajich JE, Zucconi L et al (2018) Antarctic cryptoendolithic fungal communities are highly adapted and dominated by Lecanoromycetes and Dothideomycetes. Front Microbiol 9:1392. https://doi.org/10.3389/fmicb.2018.01392

    Article  PubMed  PubMed Central  Google Scholar 

  85. Selbmann L, Isola D, Fenice M et al (2012) Potential extinction of Antarctic endemic fungal species as a consequence of global warming. Sci Tot Environ 438:127–134. https://doi.org/10.1016/j.scitotenv.2012.08.027

    Article  CAS  Google Scholar 

  86. Cox F, Newsham KK, Robinson CH (2019) Endemic and cosmopolitan fungal taxa exhibit differential abundances in total and active communities of Antarctic soils. Environ Microbiol 21(5):1586–1596. https://doi.org/10.1111/1462-2920.14533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Niederberger TD, Bottos EM, Sohm JA et al (2019) Rapid Microbial Dynamics in response to an Induced Wetting Event in Antarctic Dry Valley Soils. Front Microbiol 10:621. https://doi.org/10.3389/fmicb.2019.00621

    Article  PubMed  PubMed Central  Google Scholar 

  88. Newsham K, Hopkins D, Carvalhais L et al (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Change 6:182–186. https://doi.org/10.1038/nclimate2806

    Article  Google Scholar 

  89. McKnight DM, Tate CM, Andrews ED et al (2007) Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: a long-term geomorphological experiment. Geomorphology 89(1–2):186–204. https://doi.org/10.1016/j.geomorph.2006.07.025

    Article  Google Scholar 

  90. Tiao G, Lee CK, McDonald IR et al (2012) Rapid microbial response to the presence of an ancient relic in the Antarctic Dry Valleys. Nat Commun 3(1):660. https://doi.org/10.1038/ncomms1645

    Article  CAS  PubMed  Google Scholar 

  91. Van Horn DJ, Okie JG, Buelow HN et al (2014) Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. AEM 80(10):3034–3043. https://doi.org/10.1128/AEM.03414-1

    Article  Google Scholar 

  92. Buelow HN, Winter AS, Van Horn DJ et al (2016) Microbial community responses to increased water and organic matter in the arid soils of the McMurdo Dry valleys, Antarctica. Front Microbiol 7:1040. https://doi.org/10.3389/fmicb.2016.01040

    Article  PubMed  PubMed Central  Google Scholar 

  93. Monteiro MR, Marshall AJ, Hawes I et al (2022) Geochemically defined space-for-time transects successfully capture microbial dynamics along lacustrine chronosequences in a polar desert. Front Microbiol 12:783767. https://doi.org/10.3389/fmicb.2021.783767

    Article  PubMed  PubMed Central  Google Scholar 

  94. Misiak M, Goodall-Copestake WP, Sparks TH et al (2020) Inhibitory effects of climate change on the growth and extracellular enzyme activities of a widespread Antarctic soil fungus. Glob Chang Biol 27(5):1111–1125. https://doi.org/10.1111/gcb.15456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Monteiro MR, Marshall AJ, Lee CK et al (2023) Bringing Antarctica to the lab: a polar desert environmental chamber to study the response of Antarctic microbial communities to climate change. Polar Biol 46(5):445–459. https://doi.org/10.1007/s00300-023-03135-7

    Article  Google Scholar 

  96. Kim D, Park HJ, Kim JH et al (2018) Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region. J Basic Microbiol 58(6):513–522. https://doi.org/10.1002/jobm.201700470

    Article  CAS  PubMed  Google Scholar 

  97. Newsham KK (2024) Diurnal temperature fluctuation inhibits the growth of an Antarctic fungus. Fungal Biology (in

  98. Newsham KK, Misiak M, Goodall-Copestake WP et al (2022) Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil. Front Microbiol 13:1050372. https://doi.org/10.3389/fmicb.2022.1050372

    Article  PubMed  PubMed Central  Google Scholar 

  99. Panin AL, Sboychakov VB, Belov AB et al (2016) Natural and technogenic focality of infectious diseases in the territory of Antarctic settlements. Biol Bull Rev 6:320–332. https://doi.org/10.1134/S2079

    Article  Google Scholar 

  100. da Silva TH, Gomes ECQ, Gonçalves VN et al (2022) Does maritime Antarctic permafrost harbor environmental fungi with pathogenic potential? Fungal Biol 126(8):488–497. https://doi.org/10.1016/j.funbio.2022.04.003

    Article  CAS  PubMed  Google Scholar 

  101. de Sousa JR, Goncalves VN, de Holanda RA et al (2017) Pathogenic potential of environmental resident fungi from ornithogenic soils of Antarctica. Fungal biol 121(12):991–1000. https://doi.org/10.1016/j.funbio.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  102. Gonçalves VN, Oliveira FS, Carvalho CR et al (2017) Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. Extremophiles 21:851–860. https://doi.org/10.1007/s00792-017-0947-x

    Article  PubMed  Google Scholar 

  103. Zhang T, Yan D, Ji Z et al (2022) A comprehensive assessment of fungal communities in various habitats from an ice-free area of maritime Antarctica: diversity, distribution, and ecological trait. Environ Microbiome 17(1):54. https://doi.org/10.1186/s40793-022-00450-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Italian National Antarctic Research Program for funding sampling campaigns and research activities in Italy in the frame of PNRA projects. This work was supported by the Italian National Program for Antarctic Researches [grant number PNRA0000005]. Dr. Laura Bertini is also acknowledged for providing a picture of the maritime Antarctic landscape.

Funding

This work was supported by the Italian National Program for Antarctic Researches (PNRA), grant numbers PNRA18_00015, PNRA_0000005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Zucconi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Melissa Fontes Landell.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zucconi, L., Cavallini, G. & Canini, F. Trends in Antarctic soil fungal research in the context of environmental changes. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01333-x

Keywords

Navigation