Skip to main content
Log in

Antarctic fungi produce pigment with antimicrobial and antiparasitic activities

  • Biotechnology and Industry - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Natural pigments have received special attention from the market and industry as they could overcome the harm to health and the environmental issues caused by synthetic pigments. These pigments are commonly extracted from a wide range of organisms, and when added to products they can alter/add new physical–chemical or biological properties to them. Fungi from extreme environments showed to be a promising source in the search for biomolecules with antimicrobial and antiparasitic potential. This study aimed to isolate fungi from Antarctic soils and screen them for pigment production with antimicrobial and antiparasitic potential, together with other previously isolated strains A total of 52 fungi were isolated from soils in front of the Collins Glacier (Southeast border). Also, 106 filamentous fungi previously isolated from the Collins Glacier (West border) were screened for extracellular pigment production. Five strains were able to produce extracellular pigments and were identified by ITS sequencing as Talaromyces cnidii, Pseudogymnoascus shaanxiensis and Pseudogymnoascus sp. All Pseudogymnoascus spp. (SC04.P3, SC3.P3, SC122.P3 and ACF093) extracts were able to inhibit S. aureus ATCC6538 and two (SC12.P3, SC32.P3) presented activity against Leishmania (L.) infantum, Leishmania amazonensis and Trypanossoma cruzii. Extracts compounds characterization by UPLC-ESI-QToF analysis confirmed the presence of molecules with biological activity such as: Asterric acid, Violaceol, Mollicellin, Psegynamide A, Diorcinol, Thailandolide A. In conclusion, this work showed the potential of Antartic fungal strains from Collins Glacier for bioactive molecules production with activity against Gram positive bacteria and parasitic protozoas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are available within the article and in the Supplementary Information. All DNA sequences are deposited in the NCBI database (www.ncbi.nlm.nih.gov).

References

  1. Rosa LH, Zani CL, Cantrell CL, Duke SO, Van Dijck P, Desideri A et al (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications, 1st edn. Springer, Cham, pp 1–17

    Chapter  Google Scholar 

  2. Mitrović T, Stamenković S, Cvetković V, Nikolić M, Tošić S, Stojičić D (2011) Lichens as source of versatile bioactive compounds: an open window for green therapy against diverse cancers. Biol Nyssana 2(1):1–6

    Google Scholar 

  3. Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S et al (2020) Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24(4):447–473. https://doi.org/10.1007/s00792-020-01180-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52(8):4669–4678. https://doi.org/10.1007/s13197-014-1601-6

    Article  CAS  PubMed  Google Scholar 

  5. Sarli DA, Sánchez LA, Delgado OD (2021) Burkholderia gladioli MB39 an antarctic strain as a biocontrol agent. Curr Microbiol 78(6):2332–2344. https://doi.org/10.1007/s00284-021-02492-y

    Article  CAS  PubMed  Google Scholar 

  6. Shahid M, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331. https://doi.org/10.1016/j.jclepro.2013.03.031

    Article  CAS  Google Scholar 

  7. Dufosse L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61. https://doi.org/10.1016/j.copbio.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  8. de Menezes GCA, Godinho VM, Porto BA, Gonçalves VN, Rosa LH (2017) Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 21(2):259–269. https://doi.org/10.1016/j.copbio.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  9. Pagano MC, Dhar PP (2015) Fungal pigments: an overview. In: Gupta KV (ed) Fungal biomolecules: sources, applications and recent developments, 1st edn. Willey, pp 173–181. https://doi.org/10.1002/9781118958308.ch1

    Chapter  Google Scholar 

  10. Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with< 5% soil moisture. Soil Biol Biochem 38(10):3107–3119. https://doi.org/10.1016/j.soilbio.2006.01.014

    Article  CAS  Google Scholar 

  11. Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82(2):459–471. https://doi.org/10.1111/j.1574-6941.2012.01424.x

    Article  CAS  PubMed  Google Scholar 

  12. Cavalcante SB, dos Santos CB, Kreusch MG, da Silva AF, Duarte RTD, Robl D (2023) The hidden rainbow: the extensive biotechnological potential of Antarctic fungi pigments. Braz J Microbiol 54:1675–1687. https://doi.org/10.1007/s42770-023-01011-4

    Article  PubMed  Google Scholar 

  13. Kreusch MG, Duarte RTD (2021) Photoprotective compounds and radioresistance in pigmented and non-pigmented yeasts. Appl Microbiol Biotechnol 105(9):3521–3532. https://doi.org/10.1007/s00253-021-11271-5

    Article  CAS  PubMed  Google Scholar 

  14. Shi T, Yu YY, Dai JJ, Zhang YT, Hu WP, Zheng L et al (2021) New Polyketides from the Antarctic Fungus Pseudogymnoascus sp. HSX2#-11. Mar Drugs 19(3):168. https://doi.org/10.3390/md19030168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ (2017) Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol 4:4. https://doi.org/10.1186/s40694-017-0033-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S (2008) Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int J Food Microbiol 126(1–2):20–23. https://doi.org/10.1016/j.ijfoodmicro.2008.04.019

    Article  CAS  PubMed  Google Scholar 

  17. Liang B, Du XJ, Li P, Sun CC, Wang S (2018) Investigation of citrinin and pigment biosynthesis mechanisms in Monascus purpureus by transcriptomic analysis. Front Microbiol 9:1374. https://doi.org/10.3389/fmicb.2018.01374

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fujita K, Ikuta M, Nishimura S, Sugiyama R, Yoshimura A, Kakeya H (2021) Amphiol, an Antifungal Fungal Pigment from Pseudogymnoascus sp. PF1464. J Nat Prod 84(4):986–992. https://doi.org/10.1021/acs.jnatprod.0c01010

    Article  CAS  PubMed  Google Scholar 

  19. Santos JA, Meyer E, Sette LD (2020) Fungal community in antarctic soil along the retreating Collins Glacier (Fildes peninsula, King George Island). Microorganisms 8(8):1145. https://doi.org/10.3390/microorganisms8081145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Villanueva P, Vásquez G, Gil-Durán C, Oliva V, Díaz A, Henríquez M et al (2021) Description of the first four species of the genus Pseudogymnoascus from Antarctica. Front Microbiol 12:713189. https://doi.org/10.3389/fmicb.2021.713189

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gonçalves VN, de Souza LMD, Lirio JM, Coria SH, Lopes FAC, Convey P, Carvalho-Silva M, de Oliveira FS, Câmara PEAS, Rosa LH (2022) Diversity and ecology of fungal assemblages present in lake sediments at Clearwater Mesa, James Ross Island, Antarctica, assessed using metabarcoding of environmental DNA. Fungal Biol 126(10):640–647. https://doi.org/10.1016/j.funbio.2022.08.002

    Article  CAS  PubMed  Google Scholar 

  22. Vieira G, Purić J, Morão LG, dos Santos JA, Inforsato FJ, Sette LD et al (2018) Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri. Lett Appl Microbiol 67(1):64–71. https://doi.org/10.1111/lam.12890

    Article  CAS  PubMed  Google Scholar 

  23. Vicente VA, Najafzadeh MJ, Sun J, Gomes RR, Robl D, Marques SG et al (2014) Environmental siblings of black agents of human chromoblastomycosis. Fungal Divers 65(1):47–63. https://doi.org/10.1007/s13225-013-0246-5

    Article  Google Scholar 

  24. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA (ed) PCR protocols: a guide to methods and applications, [edição]. Academic Press, Inc, Cambridge 18(1):315–322.

  25. Singh SM, Singh PN, Singh SK, Sharma PK (2014) Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills, Antarctica. Polar Record 50(1):31–36. https://doi.org/10.1017/S0032247412000563

    Article  Google Scholar 

  26. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  27. Silva TR, Silva LCFJ, de Queiroz AC, Moreira MSA et al (2021) Pigments from Antarctic bacteria and their biotechnological applications. Crit Rev Biotechnol 41(6):809–826. https://doi.org/10.1080/07388551.2021.1888068

    Article  PubMed  Google Scholar 

  28. Shetty A, Dave N, Krishna G, Pai S, Pugazhendhi A, Varadavenkatesan T, Ramesh V, Raja S (2021) Production and extraction of red pigment by solid-state fermentation of broken rice using Monascus sanguineus NFCCI 2453. Biocatal Agric Biotechnol 33:101964. https://doi.org/10.1016/j.bcab.2021.101964

    Article  CAS  Google Scholar 

  29. Hagerthey SE, Louda JW, Mongkronsri P (2006) Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll a determination and chemotaxonomic assessment. J Phycol 42(5):1125–1136. https://doi.org/10.1111/j.1529-8817.2006.00257.x

    Article  CAS  Google Scholar 

  30. Valenzuela-Gloria MS, Balagurusamy N, Chávez-González ML, Aguilar O, Hernández-Almanza A, Aguilar CN (2021) Molecular characterization of fungal pigments. J Fungi (Basel) 7(5):326. https://doi.org/10.3390/jof7050326

    Article  CAS  PubMed  Google Scholar 

  31. Lee J, Raymond B, Bracegirdle T et al (2017) Climate change drives expansion of Antarctic ice-free habitat. Nature 547:49–54. https://doi.org/10.1038/nature22996

    Article  ADS  CAS  PubMed  Google Scholar 

  32. De Hoog GS, Guarro J, Gene J, Ahmed S, Al-Hatmi A, Figueras MJ, Vitale RG (2020) Atlas of clinical fungi, 4th edn, vol 1 and 2. Utrecht/Reus, Netherlands, pp 1600

  33. de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM, Junior PAS et al (2020) Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 24(3):367–376. https://doi.org/10.1007/s00792-020-01161-5

    Article  PubMed  Google Scholar 

  34. Rosa LH, Pinto OHB, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEA (2021) DNA metabarcoding to assess the diversity of airborne fungi present over Keller Peninsula, King George Island, Antarctica. Microb Ecol 82:165–172. https://link.springer.com/article/https://doi.org/10.1007/s00248-020-01627-1

  35. Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA (2014) Polyphasic taxonomy of the genus Talaromyces. Stud Mycol 78:175–341. https://doi.org/10.1016/j.simyco.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Dong C, Chen W, Mou Q, Lu X, Han Y et al (2020) The enigmatic Thelebolaceae (Thelebolales, Leotiomycetes): One new genus Solomyces and five new species. Front Microbiol 11:572596. https://doi.org/10.3389/fmicb.2020.572596

    Article  PubMed  PubMed Central  Google Scholar 

  37. Klempová T, Slaný O, Šišmiš M, Marcinčák S, Čertík M (2020) Dual production of polyunsaturated fatty acids and beta-carotene with Mucor wosnessenskii by the process of solid-state fermentation using agro-industrial waste. J Biotechnol 311:1–11. https://doi.org/10.1016/j.jbiotec.2020.02.006

    Article  CAS  PubMed  Google Scholar 

  38. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18. https://doi.org/10.1016/j.bej.2008.10.019

    Article  CAS  Google Scholar 

  39. Kim K, Yu H, Cha J, Seo S, Choi N, You Y (2005) Antibacterial activity of Curcuma longa L. against methicillin-resistant Staphylococcus aureus. Phytother Res 19(7):599–604. https://doi.org/10.1002/ptr.1660

    Article  PubMed  Google Scholar 

  40. Figueroa L, Jiménez C, Rodríguez J, Areche C, Chávez R, Henríquez M et al (2015) 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus. J Nat Prod 78(4):919–923. https://doi.org/10.1021/np500906k

    Article  CAS  PubMed  Google Scholar 

  41. Brüggemann RJ, Jensen GM, Lass-Flörl C (2022) Liposomal amphotericin B—the past. Antimicrob Chemother 77(Supplement_2):ii3-10. https://doi.org/10.1093/jac/dkac351

    Article  CAS  Google Scholar 

  42. Venkatachalam M, Magalon H, Dufossé L, Fouillaud M (2018) Production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius: New resources for natural red-colored metabolites. J Food Compos 70:35–48. https://doi.org/10.1016/j.jfca.2018.03.007

    Article  CAS  Google Scholar 

  43. Hasanien YA, Nassrallah AA, Zaki AG, Abdelaziz G (2022) Optimization, purification, and structure elucidation of anthraquinone pigment derivative from Talaromyces purpureogenus as a novel promising antioxidant, anticancer, and kidney radio-imaging agent. J Biotechnol 356:30–41. https://doi.org/10.1016/j.jbiotec.2022.07.002

    Article  CAS  PubMed  Google Scholar 

  44. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  45. Feng C, Wei Q, Hu C, Zou Y (2019) Biosynthesis of diphenyl ethers in fungi. Org Lett 21(9):3114–3118. https://doi.org/10.1021/acs.orglett.9b00768

    Article  CAS  PubMed  Google Scholar 

  46. Ninomiya A, Urayama SI, Hagiwara D (2022) Antibacterial diphenyl ether production induced by co-culture of Aspergillus nidulans and Aspergillus fumigatus. Appl Microbiol Biotechnol 106(11):4169–4185. https://doi.org/10.1007/s00253-022-11964-5

    Article  CAS  PubMed  Google Scholar 

  47. Nuankeaw K, Chaiyosang B, Suebrasri T, Kanokmedhakul S, Lumyong S, Boonlue S (2020) First report of secondary metabolites, Violaceol I and Violaceol II produced by endophytic fungus, Trichoderma polyalthiae and their antimicrobial activity. Mycoscience 61(1):16–21. https://doi.org/10.1016/j.myc.2019.10.001

    Article  Google Scholar 

  48. Chen M, Shao CL, Fu XM, Xu RF, Zheng JJ, Zhao DL et al (2013) Bioactive indole alkaloids and phenyl ether derivatives from a marine-derived Aspergillus sp. fungus. J Nat Prod 76(4):547–553. https://doi.org/10.1021/np300707x

    Article  CAS  PubMed  Google Scholar 

  49. Tian Y, Qin X, Lin X, Kaliyaperumal K, Zhou X, Liu J et al (2015) Sydoxanthone C and acremolin B produced by deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. J Antibiot (Tokyo) 68(11):703–706. https://doi.org/10.1038/ja.2015.55

    Article  CAS  PubMed  Google Scholar 

  50. Saetang P, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J, Borwornpinyo S et al (2017) Depsidones and an α-pyrone derivative from Simpilcillium sp. PSU-H41, an endophytic fungus from Hevea brasiliensis leaf. Phytochemistry 143:115–123. https://doi.org/10.1016/j.phytochem.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  51. Fremlin LJ, Piggott AM, Lacey E, Capon RJ (2009) Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J Nat Prod 72(4):666–670. https://doi.org/10.1021/np800777f

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Mou Y, Hu J, Wang N, Zhao L, Liu L et al (2014) Cytotoxic Polyphenols from a Sponge-Associated Fungus Aspergillus versicolor Hmp-48. Chem Biodivers 11(1):133–139. https://doi.org/10.1002/cbdv.201300115

    Article  CAS  PubMed  Google Scholar 

  53. Bunyapaiboonsri T, Yoiprommarat S, Intereya K, Kocharin K (2007) New diphenyl ethers from the insect pathogenic fungus Cordyceps sp. BCC 1861. Chem Pharm Bull (Tokyo) 55(2):304–307. https://doi.org/10.1248/cpb.55.304

    Article  CAS  PubMed  Google Scholar 

  54. Yang G, Yun K, Nenkep VN, Choi HD, Kang JS, Son BW (2010) Induced Production of Halogenated Diphenyl Ethers from the Marine-Derived Fungus Penicillium chrysogenum. Chem Biodivers 7(11):2766–2770. https://doi.org/10.1002/cbdv.201000067

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H et al (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71(9):1643–1646. https://doi.org/10.1021/np8003003

    Article  CAS  PubMed  Google Scholar 

  56. Huang Z, Nong X, Ren Z, Wang J, Zhang X, Qi S (2017) Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. Bioorg Med Chem Lett 27(4):787–791. https://doi.org/10.1016/j.bmcl.2017.01.032

    Article  CAS  PubMed  Google Scholar 

  57. Hamada N, Ueno T (1990) Lecanoric acid from the mycobiont of the lichen Stereocaulon curtatum. Phytochemistry 29(2):678–679. https://doi.org/10.1016/0031-9422(90)85147-8

    Article  CAS  Google Scholar 

  58. Umezawa H, Shibamoto N, Naganawa H, Ayukawa S, Martsuzaki M, Takeuchi T et al (1974) Isolation of lecanoric acid, an inhibitor of histidine decarboxylase from a fungus. J Antibiot (Tokyo) 27(8):587–596. https://doi.org/10.7164/antibiotics.27.587

    Article  CAS  PubMed  Google Scholar 

  59. Hao YJ, Zou ZB, Xie MM, Zhang Y, Xu L, Yu HY et al (2023) Ferroptosis Inhibitory Compounds from the Deep-Sea-Derived Fungus Penicillium sp. MCCC 3A00126. Mar Drugs 21(4):234. https://doi.org/10.3390/md21040234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paluka J, Kanokmedhakul K, Soytong M, Soytong K, Kanokmedhakul S (2019) Meroditerpene pyrone, tryptoquivaline and brasiliamide derivatives from the fungus Neosartorya pseudofischeri. Fitoterapia 137:104257. https://doi.org/10.1016/j.fitote.2019.104257

    Article  CAS  PubMed  Google Scholar 

  61. Ranković B, Mišić M (2008) The antimicrobial activity of the lichen substances of the lichens Cladonia furcata, Ochrolechia androgyna, Parmelia caperata and Parmelia conspresa. Biotechnol Biotechnol Equip 22(4):1013–1016. https://doi.org/10.1080/13102818.2008.10817601

    Article  Google Scholar 

  62. Nugraha AS, Untari LF, Laub A, Porzel A, Franke K, Wessjohann LA (2021) Anthelmintic and antimicrobial activities of three new depsides and ten known depsides and phenols from Indonesian lichen: Parmelia cetrata Ach. Nat Prod Res 35(23):5001–5010. https://doi.org/10.1080/14786419.2020.1761361

    Article  CAS  PubMed  Google Scholar 

  63. Zhao X, Chen Y, Long T, Liu Z, Zhang Q, Zhang H et al (2023) Genome Mining and Biosynthetic Reconstitution of Fungal Depsidone Mollicellins Reveal a Dual Functional Cytochrome P450 for Ether Formation. J Nat Prod 86(8):2046–2053. https://doi.org/10.1021/acs.jnatprod.3c00609

    Article  CAS  PubMed  Google Scholar 

  64. Ibrahim SRM, Mohamed GA, Al Haidari RA, El-Kholy AA, Zayed MF, Khayat MT (2018) Biologically active fungal depsidones: Chemistry, biosynthesis, structural characterization, and bioactivities. Fitoterapia 129:317–365. https://doi.org/10.1016/j.fitote.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  65. Xu H, Zhou L, Wang M, Wei L, Qu H, Ma J et al (2022) Chemical constituents from marine derived fungus Talaromyces cellulolyticus SHJ-3 and its chemotaxonomic significance. Biochem Syst Ecol 100:104377. https://doi.org/10.1016/j.bse.2021.104377

    Article  CAS  Google Scholar 

  66. Luo XW, Chen CM, Li KL, Lin XP, Gao CH, Zhou XF et al (2021) Sesquiterpenoids and meroterpenoids from a mangrove derived fungus Diaporthe sp. SCSIO 41011. Nat Prod Res 35(2):282–288. https://doi.org/10.1080/14786719.2019.1627355

    Article  CAS  PubMed  Google Scholar 

  67. Hou X, Li C, Zhang R, Li Y, Li H, Zhang Y et al (2022) Unusual Tetrahydropyridoindole-Containing Tetrapeptides with Human Nicotinic Acetylcholine Receptors Targeting Activity Discovered from Antarctica-Derived Psychrophilic Pseudogymnoascus sp. HDN17–933. Mar Drugs 20(10):593. https://doi.org/10.3390/md20100593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee J, Lee J, Kim GJ, Yang I, Wang W, Nam JW et al (2019) Mycousfurans A and B, antibacterial usnic acid congeners from the fungus Mycosphaerella sp., isolated from a marine sediment. Mar Drugs 17(7):422. https://doi.org/10.3390/md17070422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao YY (2013) Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: a review. J Ethnopharmacol 149(1):35–48. https://doi.org/10.1016/j.jep.2013.06.031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarships financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Robl.

Ethics declarations

Ethical approval

Not required.

Consent to participate

Not applicable.

Consent for publication

The authors are in accordance with the submission of this manuscript to the Brazilian Journal of Microbiology.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Luiz Henrique Rosa

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 708 KB)

Supplementary file2 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcante, S.B., da Silva, A.F., Pradi, L. et al. Antarctic fungi produce pigment with antimicrobial and antiparasitic activities. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01308-y

Keywords

Navigation