Skip to main content
Log in

Microbiological attributes as indicators of soil quality in coffee growing systems in Southwest Bahia, Brazil

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms are important indicators of soil quality due to their sensitivity to changes, reflecting the impacts caused by different land uses. The objective of this study was to evaluate the microbiological and physical–chemical attributes of the soil in areas cultivated with coffee under three different management systems (shaded coffee and full sun coffee with two spacings), as well as in adjacent areas under pasture and native forest, in Bahia, Brazil. The microbiological and physicochemical indicators evaluated were basal soil respiration (MBR), soil total organic carbon (TOC), microbial biomass carbon (MBC), metabolic quotient (qCO2), microbial quotient (qMic), enzyme activities (urease, acid phosphatase and fluorescein diacetate hydrolysis (FDA)). Physical and chemical indicators (particle size, texture, pH, P, K+, Ca2+, Mg2+, Al3+, and sum of bases) were also evaluated. Biological and chemical attributes were much more discriminative of study areas in the dry season. Microbial quotient (qMic) and metabolic quotient (qCO2) in the dry season showed that pasture is the most degraded land use. Conversely, nature forest and coffee with Grevillea were similar and were the best ones. In general, soil quality indicators were more sensitive to discriminate pasture and native forest from coffee systems, which, in turn, were not well discriminated among themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Companhia Nacional de Abastecimento – CONAB (2019) Monitoring the Brazilian grain harvest for the 2018/19 harvest, fourth survey. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos . Accessed October 2019

  2. Diack M (1997) Relationships between soil biological and chemical characteristics and surface soil structural properties for use in soil quality. Doctoral dissertation, Purdue University.

  3. Martins Neto FL, Matsumoto SN (2010) Qualidade do solo e nutrição de plantas em sistemas de produção de café (Coffea arabica L.). Coffee Sci 5:206–213

    Google Scholar 

  4. Prates Junior P, Moreira BC, Silva MCS, Veloso TGR, Sturmer SL, Fernandes AFA, Mendonca ES, Kasuya MCM (2019) Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 14:e0209093. https://doi.org/10.1371/journal.pone.0209093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aragão OOS, Oliveira-Longatti SM, Caputo PSC, Rufini M, Carvalho GR, Carvalho TS, Moreira FMS (2020) Microbiological indicators of soil quality are related to greater coffee yield in the Brazilian Cerrado region. Ecol Ind 113:106205. https://doi.org/10.1016/j.ecolind.2020.106205

    Article  CAS  Google Scholar 

  6. Ortega AC, Jesus CM (2011) Cerrado coffee territory: transformations in the productive structure and its impacts on the employed people. Rev Econ Sociol Rural 49:771–800. https://doi.org/10.1590/S0103-20032011000300010

    Article  Google Scholar 

  7. Ricci MSF, Costa JR, Pinto AN, Santos VLS (2006) Cultivo orgânico de cultivares de café a pleno sol e sombra. Pesqui Agropecu Bras 41:569–575. https://doi.org/10.1590/S0100-204X2006000400004

    Article  Google Scholar 

  8. Araujo R, Goedert WJ, Lacerda MPC (2007) Soil quality under different uses and native cerrado. Rev Bras Cienc Solo 31:1099–1108. https://doi.org/10.1590/S0100-06832007000500025

    Article  CAS  Google Scholar 

  9. Sauvadet M, Meersche KV, Allinne C, Gay F, Son IN, Chauvat M, Berquer T, Tixier P, Michel-Harmand J (2019) Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry. Sci Total Environ 649:1065–1074. https://doi.org/10.1016/j.scitotenv.2018.08.291

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Rousseau L, Fonte SJ, Tellez O, Van Der Hoek R (2013) Lavelle soil macrofauna indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecol Indic 27:71–82. https://doi.org/10.1016/j.ecolind.2012.11.020

    Article  CAS  Google Scholar 

  11. Azevedo Junior RR, Santos JB, Baretta D, Ramos AC, Cardoso EJBN (2017) Chemical and microbiological soil properties in organic and conventional management systems of Coffea arabica L. J Plant Nutr 40:2076–2086. https://doi.org/10.1080/01904167.2017.1346128

    Article  CAS  Google Scholar 

  12. Raiesi F, Beheshti A (2015) Microbiological indicators of soil quality and degradation following conversion from native forests to continuous croplands. Ecol Indic 50:173–185. https://doi.org/10.1016/j.ecolind.2014.11.008

    Article  CAS  Google Scholar 

  13. Kaschuk G, Alberton O, Hungary M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42:1–13. https://doi.org/10.1016/j.soilbio.2009.08.020

    Article  CAS  Google Scholar 

  14. Santos JV, Varón-Lopez M, Soares CRFS, Leal PL, Siqueira JO, Moreira FMS (2016) Biological attributes of rehabilitated soils contaminated with heavy metals. Environ Sci Pollut Res 23:6735–6748. https://doi.org/10.1007/s11356-015-5904-6

    Article  CAS  Google Scholar 

  15. Durand-Bessart C, Tixier P, Quinteros A, Andreotti F, Rapidel B, Tauvel C, Allinne C (2019) Analysis of diseases under study of tree shadows and coffee productivity in complex agroforestry systems. In: 4th World Congress of Agroforestry. Book of Abstracts. Christian Dupraz (ed.), Gosme Marie (ed.), Lawson Gerry (ed.). CIRAD, INRA, World Agroforestry, Agropolis International, MUSE. Montpellier: CIRAD-INRA, Curriculum, World Agroforestry Congress. 4, Montpellier, France, pp 784

  16. Gomes LC, Bianchi FJJA, Cardoso IM, Fernandes RBA, Fernandes Filho EI, Schulte RPO (2020) Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agric Ecosyst Environ 294:106858. https://doi.org/10.1016/j.agee.2020.106858

    Article  Google Scholar 

  17. Morais H, Marur CJ, Caramori PH, de Ribeiro AM, A, Gomes JC, (2003) Physiological and growth characteristics of coffee tree shaded with pigeon pea and cultivated in full sun. Pesqui Agropecu Bras 38:1131–1137. https://doi.org/10.1590/S0100-204X2003001000001

    Article  Google Scholar 

  18. Bonfim JA, Matsumoto SN, File JM, César FRCF, Santos MAF (2010) Arbuscular mycorrhizal fungi (AMF) and physiological aspects in coffee cultivated in agroforestry system and in full sun. Bragantia 69:201–206. https://doi.org/10.1590/S0006-87052010000100025

    Article  Google Scholar 

  19. Instituto Nacional de Meteorologia - INMET (2017) Meteorological database for teaching and research. https://bdmep.inmet.gov.br/. Accessed Oct 2019

  20. Ronchi CP, Sousa Junior JM, Ameida WL, Souza DS, Silva NO, Oliveira LB, Guerra AMNM, Ferreira PA (2015) Morfologia radicular de cultivares de café arábica submetidas a diferentes arranjos espaciais. Pesqui Agropecu Bras 50:187–195. https://doi.org/10.1590/S0100-204X2015000300001

    Article  Google Scholar 

  21. Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA (2017) Manual de métodos de análise de solo. 3d. Rio de Janeiro: Embrapa Solos, 573p

  22. Ribeiro AC, Alvarez VH, Guimarães PT (1999) Recommendations for the use of correctives and fertilizers in Minas Gerais. Viçosa, Minas Gerais

  23. Mesquita CM (2016) Manual do café: gestão da produção de café. EMATER-MG.72

  24. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. https://doi.org/10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  25. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C Biol. Biochem 19:703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  26. Feigl BJ, Sparling GP, Ross DJ, Cerri CC (1995) Soil microbial biomass in Amazonian soils: evaluation of methods and estimates of pool sizes. Soil Biol Biochem 27:1467–1472. https://doi.org/10.1016/0038-0717(95)00063-K

    Article  CAS  Google Scholar 

  27. Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Common Soil Sci Plant Anal 19:1467–1476. https://doi.org/10.1080/00103628809368027

    Article  CAS  Google Scholar 

  28. Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil-I Fumigation with chloroform. Soil Biol Biochem 8:167–177. https://doi.org/10.1016/0038-0717(76)90001-8

    Article  CAS  Google Scholar 

  29. Anderson JPE, Domsch KH (1993) The metabolic quotient of CO2 (q CO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial of forest soil. Soil Biol Biochem 25:393–395. https://doi.org/10.1016/0038-0717(93)90140-7

    Article  Google Scholar 

  30. Tabatabai MA, Bremner JM (1972) Assay of urease activity in soils. Soil Biol Biochem 4:479–487. https://doi.org/10.1016/0038-0717(72)90064-8

    Article  CAS  Google Scholar 

  31. Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for Assessing Soil Quality. Soil Science Society of America, Madison, pp 247–272

    Google Scholar 

  32. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Cienc e Agrotecnologia 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001

    Article  Google Scholar 

  33. Varmuza K, Filzmoser P (2009). CRC Press. https://doi.org/10.1201/9781420059496.ch2

  34. R CORE TEAM (2019) A: a language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. http://www.r-project.org/. Accessed October 2019

  35. Silva MB, Kliemann HJ, Silveira PM, Lanna AC (2007) Atributos biológicos do solo sob influência da cobertura vegetal e sistema de manejo. Pesqui Agropecu Bras 42:1755–1761. https://doi.org/10.1590/S0100-204X2007001200013

    Article  Google Scholar 

  36. Kaiser EA, Martens R, Heinemeyer O (1995) Temporal changes in soil microbial biomass carbon in an arable soil. Plant Soil 170:287–295. https://doi.org/10.1007/BF00010481

    Article  CAS  Google Scholar 

  37. Young A (1997) Agroforestry, soil management and sustainability. In: Agroforestry for soil management. CAB International, 2ª ed, Wallingford, pp 197–229

  38. Prates Júnior P, Moreira SLS, Jordão TC, Ngolo AO, Moreira BC, Santos RHS, Fernandes RBA, Kasuya MC (2021) Structure of AMF community in an agroforestry system of coffee and Macauba Palm. Floresta e Ambiente 28(3):1–11. https://doi.org/10.1590/2179-8087-FLORAM-2021-0013

    Article  Google Scholar 

  39. Cardoso IM, Janssen BH, Oenema O, Kuyper TW (2003) Phosphorus pools in Oxisols under shaded and unshaded coffee systems on farmers’ fields in Brazil. Agrofor Syst 58:55–64. https://doi.org/10.1023/a:1025436908000

  40. Xavier FA, Almeida EF, Cardoso IM, de Sá ME (2010) Soil phosphorus distribution in sequentially extracted fractions in tropical coffee-agroecosystems in the Atlantic forest biome, southeastern Brazil. Nutr Cycl Agroecosyst 89:31–44. https://doi.org/10.1007/s10705-010-9373-5

    Article  CAS  Google Scholar 

  41. Lisboa BB, Vargas LK, Silveira AO, Martins AF, Selbach PA (2012) Indicadores microbianos de qualidade do solo em Diferentes Sistemas de Manejo. Rev Bras Ciênc Solo 36:33–44. https://doi.org/10.1590/s0100-06832012000100004

    Article  CAS  Google Scholar 

  42. Assis Junior SL, Zanuncio JC, Kasuya MCM (2003) Soil microbial activity in agroforestry systems, monocultures, natural forest and deforested areas. Rev Arvore 27:35–41. https://doi.org/10.1590/S0100-67622003000100005

    Article  Google Scholar 

  43. Melloni R., Belleze G, Pinto AMS, Alcântara EM (2017) Impacto do controle de plantas espontâneas sobre propágulos de FMAs e micorrização de cafeeiro. Coffee Sci. 12:207–215. http://www.sbicafe.ufv.br:80/handle/123456789/8644 Accessed 21 August 2022

  44. Lopes AAC, Sousa DMG, Chaer GM, Reis Junior FB, Goedert WJ, Mendes IC (2013) Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Biol Biochem 77:461–472. https://doi.org/10.2136/sssaj2012.0191

    Article  CAS  Google Scholar 

  45. Tavares RLM, Farhate CVV, Souza ZM, Scala JM, Torres JLR, Campos MCC (2015) Emission of CO2 and soil microbial activity in sugarcane management systems. Afr J Agric Res 10:975–982. https://doi.org/10.5897/AJAR2014.9351

    Article  Google Scholar 

  46. Lammel DR, Azevedo LCB, Paula AM, Armas RD, Baretta D, Cardoso JBN (2015) Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil. Brazil J Biol 75:894–905. https://doi.org/10.1590/1519-6984.02414

    Article  CAS  Google Scholar 

  47. Cheng F, Peng X, Zhao P, Yuan J, Zhong C, Cheng Y, Cui C, Zhang S (2013) Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PLoS ONE. https://doi.org/10.1371/journal.pone.0067353

    Article  PubMed  PubMed Central  Google Scholar 

  48. Reynolds CM, Wolf DC, Armbruster JA (1985) Factors related to urea hydrolysis in soils. Soil Sci Soc Am J 49:104–108. https://doi.org/10.2136/sssaj1985.03615995004900010021x

    Article  CAS  Google Scholar 

  49. Lanna AC, Silveira PM, Silva MB, Ferraresi TM, Kliemann HJ (2010) Atividade de urease no solo com feijoeiro influenciada pela cobertura vegetal e sistemas de plantio. Rev Bras Cienc Solo 34:1933–1939. https://doi.org/10.1590/S0100-06832010000600018

    Article  CAS  Google Scholar 

  50. Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887. https://doi.org/10.1016/j.soilbio.2004.10.003

    Article  CAS  Google Scholar 

  51. Nunes LAPL, Dias LE, Barros IJNF, Kasuya MCM, Correia EF (2009) Impacto do monocultivo de café sobre os indicadores biológicos do solo na zona da área remanescente de Cerrado mineira. Cienc Rural 39:2467–2474. https://doi.org/10.1590/S0103-84782009005000216

    Article  CAS  Google Scholar 

  52. Evangelista CR, Partelli FL, Ferreira EPB, Correchel V (2012) Atividade enzimática do solo sob sistema de produção orgânica e convencional na cultura da cana-de-açúcar em Goiás. Semina: Cienc Agr 33:1251–62. http://www.alice.cnptia.embrapa.br/alice/handle/doc/932367. Accessed 21 August 2022

  53. Trannin ICB, Siqueira JO, Moreira FMS (2007) Características biológicas do solo indicadoras de qualidade após dois anos de aplicação de biossólido industrial e cultivo de milho. Rev Bras Ciênc Solo 31:1173–1184. https://doi.org/10.1590/S0100-06832007000500032

    Article  CAS  Google Scholar 

  54. Carneiro MAC, Assis PCR, Melo LBC, Pereira HS, Paulino HB, Neto ANS (2009) Atributos bioquímicos em dois solos de cerrado sob diferentes sistemas de manejo e uso. Pesqui Agropecu Trop 38:276–283

    Google Scholar 

  55. Chávez LF, Escobar LF, Anghinoni I, Carvalho PCF, Meurer EJ (2011) Metabolic diversity and microbial activity in the soil in an integrated crop-livestock system under grazing intensities. Pesq Agropec Bras 46:1254–1261. https://doi.org/10.1590/S0100-204X2011001000020

    Article  Google Scholar 

  56. Gatiboni LC, Kaminski J, dos Rheinheimer D, Brunetto G (2008) Fósforo da Biomassa microbiana e atividade de fosfatases ácidas Durante A Diminuição do Fósforo Disponível no solo. Pesq Agropec Bras 43:1085–1091. https://doi.org/10.1590/s0100-204x2008000800019

    Article  Google Scholar 

  57. Conte E, Anghinoni I, Rheinheimer DS (2002) Fósforo da Biomassa microbiana e atividade de fosfatase ácida Após Aplicação de Fosfato em solo no Sistema Plantio Direto. Rev Bras Ciênc Solo 26:925–930. https://doi.org/10.1590/s0100-06832002000400009

    Article  CAS  Google Scholar 

  58. Guggenberger G, Haumaier L, Zech W, Thomas RJ (1996) Assessing the organic phosphorus status of an Oxisol under tropical pastures following native savanna using 31p NMR spectroscopy. Biol Fertil Soils 23:332–339. https://doi.org/10.1007/bf00335963

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado da Bahia (Fapesb), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Processes 310015/2021-9 and 406658/2022-6) for financial support and for granting scholarships. This research is associated with the Instituto Nacional de Ciência e Tecnologia Biodiversidade do Solo (National Institute of Science and Technology—Soil Biodiversity/INCT-CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Lopes Leal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira de Oliveira, E., Rocha Quirino Martins, A.K., de Oliveira Longatti, S.M. et al. Microbiological attributes as indicators of soil quality in coffee growing systems in Southwest Bahia, Brazil. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01279-0

Keywords

Navigation