Skip to main content
Log in

Enterococcus mundtii A2 biofilm and its anti-adherence potential against pathogenic microorganisms on stainless steel 316L

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pathogenic bacterial biofilms present significant challenges, particularly in food safety and material deterioration. Therefore, using Enterococcus mundtii A2, known for its antagonistic activity against pathogen adhesion, could serve as a novel strategy to reduce pathogenic colonization within the food sector. This study aimed to investigate the biofilm-forming ability of E. mundtii A2, isolated from camel milk, on two widely used stainless steels within the agri-food domain and to assess its anti-adhesive properties against various pathogens, especially on stainless steel 316L. Additionally, investigations into auto-aggregation and co-aggregation were also conducted. Plate count methodologies revealed increased biofilm formation by E. mundtii A2 on 316L, followed by 304L. Scanning electron microscopy (SEM) analysis revealed a dense yet thin biofilm layer, playing a critical role in reducing the adhesion of L. monocytogenes CECT 4032 and Staphylococcus aureus CECT 976, with a significant reduction of ≈ 2 Log CFU/cm2. However, Gram-negative strains, P. aeruginosa ATCC 27853 and E. coli ATCC 25922, exhibit modest adhesion reduction (~ 0.7 Log CFU/cm2). The findings demonstrate the potential of applying E. mundtii A2 biofilms as an effective strategy to reduce the adhesion and propagation of potentially pathogenic bacterial species on stainless steel 316L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu X, Yao H, Zhao X et al (2023) Biofilm formation and control of foodborne pathogenic bacteria. Molecules 28(6):2432. https://doi.org/10.3390/molecules28062432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carrascosa C, Raheem D, Ramos F et al (2021) Microbial biofilms in the food industry—a comprehensive review. Int J Environ Res Public Health 18(4):2014. https://doi.org/10.3390/ijerph18042014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Olanbiwoninu AA, Popoola BM (2023) Biofilms and their impact on the food industry. Saudi J Biol Sci 30(2):103523. https://doi.org/10.1016/j.sjbs.2022.103523

    Article  CAS  PubMed  Google Scholar 

  4. Galié S, García-Gutiérrez C, Miguélez EM et al (2018) Biofilms in the food industry: health aspects and control methods. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00898

  5. Coughlan LM, Cotter PD, Hill C et al (2016) New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01641

  6. Dula S, Ajayeoba TA, Ijabadeniyi OA (2021) Bacterial biofilm formation on stainless steel in the food processing environment and its health implications. Folia Microbiol 66(3):293–302. https://doi.org/10.1007/s12223-021-00864-2

    Article  CAS  Google Scholar 

  7. Awad TS, Asker D, Hatton BD (2018) Food-safe modification of stainless steel food-processing surfaces to reduce bacterial biofilms. ACS Appl Mater Interf 10(27):22902–22912. https://doi.org/10.1021/acsami.8b03788

    Article  CAS  Google Scholar 

  8. Mazaheri T, Cervantes-Huamán BRH, Turitich L et al (2022) Removal of Listeria monocytogenes biofilms on stainless steel surfaces through conventional and alternative cleaning solutions. Int J Food Microbiol 381:109888. https://doi.org/10.1016/j.ijfoodmicro.2022.109888

    Article  CAS  PubMed  Google Scholar 

  9. Khatoon Z, McTiernan CD, Suuronen EJ et al (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4(12):e01067. https://doi.org/10.1016/j.heliyon.2018.e01067

    Article  PubMed  PubMed Central  Google Scholar 

  10. Khalil MA, Alorabi JA, Al-Otaibi LM et al (2022) Antibiotic resistance and biofilm formation in Enterococcus spp. isolated from urinary tract infections. Pathogens 12(1). https://doi.org/10.3390/pathogens12010034

  11. Zanzan M, Ezzaky Y, Achemchem F et al (2023) Optimisation of thermostable exopolysaccharide production from Enterococcus mundtii A2 isolated from camel milk and its structural characterisation. Int Dairy J 147:105718. https://doi.org/10.1016/j.idairyj.2023.105718

    Article  CAS  Google Scholar 

  12. Tatsaporn T, Kornkanok K (2020) Using potential lactic acid bacteria biofilms and their compounds to control biofilms of foodborne pathogens. Biotechnol Rep 26:e00477. https://doi.org/10.1016/j.btre.2020.e00477

    Article  Google Scholar 

  13. Vuotto C, Longo F, Donelli G (2014) Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci 6(4):189–194. https://doi.org/10.1038/ijos.2014.52

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zanzan M, Achemchem F, Hamadi F et al (2023) Anti-adherence activity of monomicrobial and polymicrobial food-derived Enterococcus spp. biofilms against pathogenic bacteria. Curr Microbiol 80(7):216. https://doi.org/10.1007/s00284-023-03326-9

    Article  CAS  PubMed  Google Scholar 

  15. Elidrissi A, Ezzaky Y, Boussif K et al (2023) Isolation and characterization of bioprotective lactic acid bacteria from Moroccan fish and seafood. Braz J Microbiol 54(3):2117–2127. https://doi.org/10.1007/s42770-023-01077-0

    Article  CAS  PubMed  Google Scholar 

  16. Ait Meddour A, Bendali F, Sadoun D (2015) Anti-adherence potential of Enterococcus durans cells and its cell-free supernatant on plastic and stainless steel against foodborne pathogens. Folia Microbiol 60(4):357–363. https://doi.org/10.1007/s12223-014-0367-6

    Article  CAS  Google Scholar 

  17. Santos Rosado Castro M, da Silva FM, Kabuki DY et al (2018) Biofilm formation of Enterococcus faecium on stainless steel surfaces: modeling and control by disinfection agents. J Food Process Eng 41(3):e12663. https://doi.org/10.1111/jfpe.12663

    Article  CAS  Google Scholar 

  18. Ait Ouali F, Al Kassaa I, Cudennec B et al (2014) Identification of lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces. Int J Food Microbiol 191:116–124. https://doi.org/10.1016/j.ijfoodmicro.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  19. Hossain MI, Mizan MFR, Ashrafudoulla M et al (2020) Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBECâ„¢ biofilm device. LWT 118:108864. https://doi.org/10.1016/j.lwt.2019.108864

    Article  CAS  Google Scholar 

  20. Nahle S, El Khoury A, Assaf JC et al (2022) A promising innovative technique for mycotoxin detoxification from beverages using biofilms of lactic acid bacteria. Innov Food Sci Emerg Technol 82:103165. https://doi.org/10.1016/j.ifset.2022.103165

    Article  CAS  Google Scholar 

  21. D’Angelo M, Martino GP, Blancato VS et al (2020) Diversity of volatile organic compound production from leucine and citrate in Enterococcus faecium. Appl Microbiol Biotechnol 104(3):1175–1186. https://doi.org/10.1007/s00253-019-10277-4

    Article  CAS  PubMed  Google Scholar 

  22. Morales Estrada A, González Olivares LG, Contreras López E et al (2020) SelA and SelD genes involved in selenium absorption metabolism in lactic acid bacteria isolated from Mexican cheeses. Int Dairy J 103:104629. https://doi.org/10.1016/j.idairyj.2019.104629

    Article  CAS  Google Scholar 

  23. Kasimin ME, Shamsuddin S, Molujin AM et al (2022) Enterocin: promising biopreservative produced by Enterococcus sp. microorganisms 10(4):684. https://doi.org/10.3390/microorganisms10040684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zanzan M, Ezzaky Y, Achemchem F et al (2023) Fermentative optimization and characterization of exopolysaccharides from Enterococcus faecium F58 isolated from traditional fresh goat cheese. Food Sci Biotechnol. https://doi.org/10.1007/s10068-023-01424-9

  25. Jurášková D, Ribeiro SC, Silva CCG (2022) Exopolysaccharides produced by lactic acid bacteria: from biosynthesis to health-promoting properties. Foods 11(2):156. https://doi.org/10.3390/foods11020156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oleksy-Sobczak M, Klewicka E, Piekarska-Radzik L (2020) Exopolysaccharides production by Lactobacillus rhamnosus strains – optimization of synthesis and extraction conditions. LWT 122:109055. https://doi.org/10.1016/j.lwt.2020.109055

    Article  CAS  Google Scholar 

  27. Kravcheniuk K (2018) Characteristic features of Enterococcus faecalis film formation on the stainless steel AISI 321 depending on the surface roughness. Sci Messenger LNUVMB 20(90):58–62. https://doi.org/10.32718/nvlvet9012

    Article  Google Scholar 

  28. Gabriel AA, Ballesteros MLP, Rosario LMD et al (2018) Elimination of Salmonella enterica on common stainless steel food contact surfaces using UV-C and atmospheric pressure plasma jet. Food Control 86:90–100. https://doi.org/10.1016/j.foodcont.2017.11.011

    Article  CAS  Google Scholar 

  29. Diaz M, Ladero V, del Rio B et al (2016) Biofilm-forming capacity in biogenic amine-producing bacteria isolated from dairy products. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00591

  30. Goh Yong J, Klaenhammer Todd R (2010) Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 76(15):5005–5012. https://doi.org/10.1128/AEM.00030-10

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. García-Almendárez BE, Cann IKO, Martin SE et al (2008) Effect of Lactococcus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms. Food Control 19(7):670–680. https://doi.org/10.1016/j.foodcont.2007.07.015

    Article  CAS  Google Scholar 

  32. Zhao T, Doyle Michael P, Zhao P (2004) Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms. Appl Environ Microbiol 70(7):3996–4003. https://doi.org/10.1128/AEM.70.7.3996-4003.2004

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Winkelströter LK, Tulini FL, De Martinis ECP (2015) Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on Listeria monocytogenes biofilm formation. LWT 64(2):586–592. https://doi.org/10.1016/j.lwt.2015.06.014

    Article  CAS  Google Scholar 

  34. Gómez NC, Ramiro JMP, Quecan BXV et al (2016) Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 biofilms formation. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00863

  35. Shokri D, Khorasgani MR, Mohkam M et al (2018) The inhibition effect of lactobacilli against growth and biofilm formation of Pseudomonas aeruginosa. Probiotics Antimicrob Proteins 10(1):34–42. https://doi.org/10.1007/s12602-017-9267-9

    Article  CAS  PubMed  Google Scholar 

  36. Speranza B, Sinigaglia M, Corbo MR (2009) Non starter lactic acid bacteria biofilms: a means to control the growth of Listeria monocytogenes in soft cheese. Food Control 20(11):1063–1067. https://doi.org/10.1016/j.foodcont.2009.01.006

    Article  CAS  Google Scholar 

  37. Moradi M, Kousheh SA, Almasi H et al (2020) Postbiotics produced by lactic acid bacteria: the next frontier in food safety. Compr Rev Food Sci Food Saf 19(6):3390–3415. https://doi.org/10.1111/1541-4337.12613

    Article  PubMed  Google Scholar 

  38. Gogoi A, Poudel M, Sahu J et al (2021) Role of microbial biofilms in agriculture: perspectives on plant and soil health. In: Vaishnav A, Choudhary D K (eds) Microbial polymers: applications and ecological perspectives. Singapore, p 251-288. https://doi.org/10.1007/978-981-16-0045-6_12

  39. Ajijah N, Fiodor A, Pandey AK et al (2023) Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: a multifaceted agent for sustainable agriculture. Diversity 15(1):112. https://doi.org/10.3390/d15010112

    Article  CAS  Google Scholar 

  40. Bhatia R, Gulati D, Sethi G (2021) Biofilms and nanoparticles: applications in agriculture. Folia Microbiol 66(2):159–170. https://doi.org/10.1007/s12223-021-00851-7

    Article  CAS  Google Scholar 

  41. Pandit A, Adholeya A, Cahill D et al (2020) Microbial biofilms in nature: unlocking their potential for agricultural applications. J Appl Microbiol 129(2):199–211. https://doi.org/10.1111/jam.14609

    Article  CAS  PubMed  Google Scholar 

  42. Kour D, Rana KL, Kaur T et al (2022) Microbial biofilms: functional annotation and potential applications in agriculture and allied sectors. In: Yadav MK, Singh BP (eds) New and future developments in microbial biotechnology and bioengineering: microbial biofilms, pp 283–301. https://doi.org/10.1016/B978-0-444-64279-0.00018-9

    Chapter  Google Scholar 

  43. Ghiasian M (2022) Microbial biofilms: Beneficial applications for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) New and future developments in microbial biotechnology and bioengineering, pp 145–155. https://doi.org/10.1016/B978-0-12-820526-6.00009-9

    Chapter  Google Scholar 

  44. Turhan EU, Erginkaya Z, Korukluoğlu M et al (2019) Beneficial biofilm applications in food and agricultural industry. In: Erginkaya Z, Erten H (eds) Malik A. Health and safety aspects of food processing technologies, Cham, pp 445–469. https://doi.org/10.1007/978-3-030-24903-8_15

    Chapter  Google Scholar 

Download references

Funding

The author Mariem Zanzan was the beneficiary of a scholarship from the National Center for Scientific and Technical Research (Grant number 18UIZ2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Achemchem.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Beatriz Ernestina Cabilio Guth

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanzan, M., Ezzaky, Y., Hamadi, F. et al. Enterococcus mundtii A2 biofilm and its anti-adherence potential against pathogenic microorganisms on stainless steel 316L. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01266-5

Keywords

Navigation