Skip to main content
Log in

Designing and validation of specific primers for the quantitative detection of bacteria in sugarcane inoculant

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Endophytic diazotrophic plant growth-promoting bacteria Herbaspirillum rubrisubalbicans (HCC103), Herbaspirillum seropedicae (HRC54), Paraburkholderia tropica (Ppe8T), Gluconacetobacter diazotrophicus (Pal5T), and Nitrospirillum amazonense (CBAmC) have been used as inoculants for sugarcane. The genome sequences of these strains were used to design a set of specific primers for the real-time PCR (qPCR) assay. Primer specificity was confirmed by conventional PCR using the genomic DNAs of 25 related bacterial species and the five target strains. The qPCR assays were conducted using root and shoot samples from two sugarcane varieties (RB867515 and RB92579). These samples were collected both with and without inoculation, using the target strains specified in this study. The sugarcane plants were grown in a greenhouse, utilizing a substrate composed of sterile sand and vermiculite in a 2:1 ratio, for a duration of 55 days. The primers designed for this study successfully amplified target DNA fragments from each of the bacterial species, enabling their differentiation at the species level. The total bacterial population present in the sugarcane quantified using qPCR was on average 105.2 cells g−1 of fresh tissue. Across both evaluated varieties, it was observed that the population of inoculated bacteria tended to decrease over time and became more concentrated in the sugarcane roots compared to the aerial parts. The qPCR results suggest that both the host and the microbes influence the endophytic population and the bacterial number decreases with plant age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. CONAB (2019) Acompanhamento da Safra Brasileira de Cana-de-açúcar. ISSN 2318–7921. http://www.conab.gov.br. Accessed 5 December 2019

  2. Cruz CHB, Souza GM, Cantarella H, et al (2016) Universidades e empresas: 40 anos de ciência e tecnologia para o etanol brasileiro. São Paulo, Brasil. https://doi.org/10.5151/9788521210627

  3. Oliveira ALM, Canuto EL, Urquiaga S et al (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32. https://doi.org/10.1007/s11104-006-0025-0

    Article  CAS  Google Scholar 

  4. Schultz N, Silva JA, Sousa JS, Monteiro RC, Oliveira RP, Chaves VA, Pereira W, Silva MF, Baldani JI, Boddey RM, Reis VM, Urquiaga S (2014) Inoculation of sugarcane with diazotrophic bactéria. R Bras Ci Solo 38:407–414. https://doi.org/10.1590/S0100-06832014000200005

    Article  Google Scholar 

  5. Schultz N, Pereira W, Silva PA, Baldani JI, Boddey RM, Alves BJR, Urquiaga S, Reis VM (2017) Yield of sugarcane varieties and their sugar quality grown in different soil types and inoculated with a diazotrophic bacteria consortium. Plant Prod Sci 20:366–374. https://doi.org/10.1080/1343943X.2017.1374869

    Article  CAS  Google Scholar 

  6. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: Recent developments and applications. FEMS Microbiol Lett 278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918

    Article  CAS  PubMed  Google Scholar 

  7. Weyens N, Van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598. https://doi.org/10.1016/j.tibtech.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  8. Oliveira ALM, Canuto ED, Reis VM, Baldani JI (2003) Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria. Braz J Microbiol 34:59–61. https://doi.org/10.1590/S1517-83822003000500020

    Article  Google Scholar 

  9. Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugarcane: Nitrogen-15 and nitrogen balance estimates. Soil Sci Soc Am J 56:105–114. https://doi.org/10.2136/sssaj1992.03615995005600010017x

    Article  Google Scholar 

  10. Urquiaga S, Xavier GR, Morais RF et al (2012) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant and Soil 356:5–21. https://doi.org/10.1007/s11104-011-1016-3

    Article  CAS  Google Scholar 

  11. Pereira WB, Sousa JS, Schultz N, Reis VM (2019) Sugarcane productivity as a function of nitrogen fertilization and inoculation with Diazotrophic plant growth-promoting bacteria. Sugar Tech 21:71–82. https://doi.org/10.1007/s12355-018-0638-7

    Article  CAS  Google Scholar 

  12. Etesami H, Adl SM (2020) Plant Growth-Promoting Rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In: Kumar M, Kumar V, Prasad R (eds) Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2576-6_9

  13. Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D et al (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: A transcriptomic view of hormone pathways. PLoS One 9(12):e114744. https://doi.org/10.1371/journal.pone.0114744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silva R, Filgueiras L, Santos B, Coelho M, Silva M, Estrada-Bonilla G, Vidal M, Baldani JI, Meneses C (2020) Gluconacetobacter diazotrophicus changes the molecular mechanisms of root development in Oryza sativa L. growing under water stress. Int J Mol Sci 21(1):333. https://doi.org/10.3390/ijms21010333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Filgueiras L, Silva R, Almeida I et al (2019) Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L. Plant Soil. https://doi.org/10.1007/s11104-019-04163-1

    Article  Google Scholar 

  16. Antunes JEL, Freitas ADS, Oliveira LMS, Lyra MCCP, Fonseca MAC, Santos CERS, Oliveira JP, Araújo ASF, Figueiredo MVB (2019) Sugarcane inoculated with endophytic diazotrophic bacteria: effects on yield, biological nitrogen fixation and industrial characteristics. An Acad Bras Cienc. https://doi.org/10.1590/0001-3765201920180990

    Article  PubMed  Google Scholar 

  17. Pereira W, Leite JM, Hipólito GS et al (2013) Acúmulo de biomassa em variedades de cana-de-açúcar inoculadas com diferentes estirpes de bactérias diazotróficas. Rev Ciência Agron 44:363–370

    Article  Google Scholar 

  18. Gírio LAS, Dias FLF, Reis MR et al (2015) Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesq Agrop Bras. https://doi.org/10.1590/S0100-204X2015000100004

    Article  Google Scholar 

  19. Pedula RO, Schultz N, Monteiro RC et al (2016) Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. Afr J Agric Res 30:2786–2795. https://doi.org/10.5897/AJAR2016.11141

    Article  Google Scholar 

  20. Dos Santos SG, Ribeiro FS, Fonseca CS et al (2017) Development and nitrate reductase activity of sugarcane inoculated with five diazotrophic strains. Arch Microbiol. https://doi.org/10.1007/s00203-017-1357-2

    Article  PubMed  Google Scholar 

  21. Ricchi M, Bertasio C, Boniotti MB, Vicari N, Russo S, Tilola M, Bellotti MA, Bertasi B (2017) Comparison among the Quantification of Bacterial Pathogens by qPCR, dPCR, and Cultural Methods. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01174

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Qu Y, Li S et al (2017) Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Sci Rep 7:4837. https://doi.org/10.1038/s41598-017-05260-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Romano I, Ventorino V, Pepe O (2020) Effectiveness of plant beneficial microbes: Overview of the methodological approaches for the assessment of root colonization and persistence. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00006

  24. Rilling JI, Acuña JJ, Nannipieri P, Cassan F, Maruyama F, Jorquera MA (2019) Current opinion and perspectives on the methods for tracking and monitoring plant growth-promoting bacteria. Soil Biol Biochem 130:205–219. https://doi.org/10.1016/j.soilbio.2018.12.012

    Article  CAS  Google Scholar 

  25. Reis Junior FB, Silva LG, Reis VM, Döbereiner J (2000) Ocorrência de Bactérias Diazotróficas em Diferentes Genótipos de Cana-de-açúcar. Pesq Agrop Brasileira 35:985–994. https://doi.org/10.1590/S0100-204X2000000500016

    Article  Google Scholar 

  26. Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plantlets. Plant Soil 242:205–215. https://doi.org/10.1023/A:1016249704336

    Article  CAS  Google Scholar 

  27. Magnani GS, Cruz LM, Weber H, Bespalhok JC, Daros E, Baura V, Yates MG, Monteiro RA, Faoro H, Pedrosa FO, Souza EM (2013) Culture-independent analysis of endophytic bacterial communities associated with Brazilian sugarcane. Genet Mol Res. https://doi.org/10.4238/2013.October.15.3

    Article  PubMed  Google Scholar 

  28. Li W, Yan Z, Nakhla MK (2015) Real-Time for Detection and Identification of Anguina funesta, A. agrostis, A. tritici, and A. pacificae. Am Phytopathol Soc https://doi.org/10.1094/PDIS-09-14-0959-RE

  29. Luchi N, Capretti P, Pazzagli M, Pinzani P (2016) Powerful qPCR assays for the early detection of latent invaders: interdisciplinary approaches in clinical cancer research and plant pathology. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-016-7541-5

    Article  PubMed  Google Scholar 

  30. Couillerot O, Bouffaud M, Baudoin E et al (2010) Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biol Biochem. https://doi.org/10.1016/j.soilbio.2010.09.003

    Article  Google Scholar 

  31. Faleiro AC, Pereira TP, Espindula E et al (2013) Real Time PCR detection targeting nifA gene of plant growth promoting bacteria Azospirillum brasilense strain FP2 in maize roots. Symbiosis. https://doi.org/10.1007/s13199-013-0262-y

    Article  Google Scholar 

  32. Da Cunha ET, Pedrolo AM, Paludo F et al (2020) Azospirillum brasilense viable cells enumeration using propidium monoazide-quantitative PCR. Arch Microbiol. https://doi.org/10.1007/s00203-020-01877-0

    Article  PubMed  Google Scholar 

  33. Stets MI, Alqueres SMC, Souza EM et al (2015) Quantification of Azospirillum brasilense FP2 bacteria in wheat roots by strain-specific quantitative PCR. Appl Environ Microbiol 81:6700–6709. https://doi.org/10.1128/AEM.01351-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pereira TP, do Amaral FP, Dall’Asta P, Brod FCA, Arisi ACM (2014) Real-Time PCR quantification of the plant growth promoting bacteria herbaspirillum seropedicae strain SmR1 in maize roots. Mol Biotechnol 56:660–670. https://doi.org/10.1007/s12033-014-9742-4

    Article  CAS  PubMed  Google Scholar 

  35. Boa Sorte PMF, Simões-Araújo JL, Melo LHV et al (2014) Development of a real-time PCR assay for the detection and quantification of Gluconacetobacter diazotrophicus in sugarcane grown under field conditions. Afr J Microbiol Res. https://doi.org/10.5897/AJMR2014.6779

    Article  Google Scholar 

  36. Robertson JM, Walsh-Weller J (1998) An introduction to PCR primer design and optimization of amplification reactions. Methods Mol Biol 98:121–154. https://doi.org/10.1385/0-89603-443-7:121

    Article  CAS  PubMed  Google Scholar 

  37. Bustin S, Huggett J (2017) qPCR primer design revisited. Biomol Detect Quantif. https://doi.org/10.1016/j.bdq.2017.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dreier M, Berthoud H, Shani N, Wechsler D, Junier P (2020) SpeciesPrimer: a bioinformatics pipeline dedicated to the design of qPCR primers for the quantification of bacterial species. PeerJ 8:e8544. https://doi.org/10.7717/peerj.8544

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baldani JI, Reis VM, Videira SS et al (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil. https://doi.org/10.1007/s11104-014-2186-6

    Article  Google Scholar 

  40. Olivares FL, James EK, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease susceptible and resistant sugarcane varieties by the endophytic diazotroph Herbaspirilium. New Phytol. https://doi.org/10.1046/j.1469-8137.1997.00684.x

    Article  Google Scholar 

  41. Baldani JI, Baldani VLD, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov.,sp. A root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36(1):86–93. https://doi.org/10.1099/00207713-36-1-86

  42. Reis VM, Santos PEL, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogenfixing, plant-associated bacterium. Int J Syst Evol Microbiol 54(Pt 6):2155–2162. https://doi.org/10.1099/ijs.0.02879-0

  43. Rodrigues L da S, Baldani VLD, Reis VM, Baldani JI (2006) Diversidade de bactérias diazotróficas endofíticas dos gêneros Herbaspirillum e Burkholderia na cultura do arroz inundado. Pesq agropec bras [Internet] 41(2):275–84. https://doi.org/10.1590/S0100-204X2006000200012

  44. Reis VM, Olivares FL, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:401–405. https://doi.org/10.1007/BF00144460

  45. Guedes HV, Santos ST dos, Perin L, Teixeira KR dos S, Reis VM, Baldani JI (2008) Polyphasic characterization of Gluconacetobacterdiazotrophicus isolates obtained from different sugarcane varieties. Braz J Microbiol [Internet] 39(4):718–23. https://doi.org/10.1590/S1517-83822008000400023

  46. Azevedo MS, Teixeira KTS, Kirchhof G, Hartmann A, Baldani JI (2005) Influence of soil and host plant crop on the genetic diversity of Azospirillum amazonense isolates. Elsevier GmbH 49:565–576. https://doi.org/10.1016/j.pedobi.06.008

  47. Magalhães FM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. Anais da Academia Brasileira de Ciências, Rio de Rio 55:417–4430

  48. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  49. Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  50. Bertalan M, Albano R, Pádua V et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5T. BMC Genomics. https://doi.org/10.1186/1471-2164-10-450

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bertalan PRA, Simões-Araújo JL, Vidal MS et al (2018) Draft genome sequence of Paraburkholderia tropica Ppe8 strain, a sugarcane endophytic diazotrophic bacterium. Braz J Microbiol. https://doi.org/10.1016/j.bjm.2017.07.005

    Article  Google Scholar 

  52. Schwab S, Terra LA, Baldani JI (2018) Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems. Mol Genet Genomics. https://doi.org/10.1007/s00438-018-1439-0

    Article  PubMed  Google Scholar 

  53. Baldani JI, Guedes HV, Vidal MS, et al (2011) Base de dados genômica de estirpes que compõem o inoculante de cana-de-açúcar e milho. Ed. Embrapa Agrobiologia. Documentos 282. Seropédica, Rio de Janeiro. 1517–8498. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/950789. Accessed 5 Oct 2023

  54. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:115. https://doi.org/10.1093/nar/gks596

    Article  CAS  Google Scholar 

  55. Ilha EC, Scariot MC, Treml D et al (2016) Comparison of real-time PCR assay and plate count for Lactobacillus paracasei enumeration in yoghurt. Ann Microbiol. https://doi.org/10.1007/s13213-015-1137-7

    Article  Google Scholar 

  56. Landell MGA, Campana MP, Figueiredo P et al (2012) Sistema de multiplicação de cana-de-açúcar com uso de mudas pré-brotadas (MPB), oriundas de gemas individualizadas. https://www.udop.com.br/ebiblio/pagina/arquivos/2013_sistema_multiplicacao_cana_com_mudas_pre_brotadas.pdf. Accessed 15 September 2020

  57. Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. Calif Agr Exp STA Cir 347:32. https://hdl.handle.net/2027/uc2.ark:/13960/t51g1sb8j

  58. Ferreira DF (2014) Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Ciência Agrotecnologia. https://doi.org/10.1590/S1413-70542014000200001

    Article  Google Scholar 

  59. Environmental Surfaces'. In: Latimer GW Jr. (ed) Official Methods of Analysis of AOAC INTERNATIONAL, 22 (New York, 2023; online edn, AOAC Publications, 4 Jan. 2023). https://doi.org/10.1093/9780197610145.005.010

  60. Bachmann B, Luke W, Hunsmann G (1990) Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res 18:1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Azevedo F, Pereira H, Johansson B (2017) Colony PCR. In: Domingues L (ed) PCR, Methods in Molecular Biology, vol 1620. Springer, New York, pp 129–139. https://doi.org/10.1007/978-1-4939-7060-5_8

  62. Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods. https://doi.org/10.1016/j.mimet.2004.07.002

    Article  PubMed  Google Scholar 

  63. Korbie D, Mattick J (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc. https://doi.org/10.1038/nprot.2008.133

    Article  PubMed  Google Scholar 

  64. Zhang Q, Wang J, Deng F, Yan Z, Xia Y et al (2015) TqPCR: A touchdown qPCR assay with significantly improved detection sensitivity and amplification efficiency of SYBR green qPCR. PLoS One 10(7):e0132666. https://doi.org/10.1371/journal.pone.013266

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kralik P and Ricchi M (2017) A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00108

  66. Agisha VN, Eapen SJ, Bhai RS et al (2017) Detecting and monitoring endophytic colonization by Pseudomonas putida BP25 in black pepper (Piper nigrum L.) using quantitative real-time PCR. J Spices Aromat Crops 26(1):1–7. https://doi.org/10.25081/josac.2017.v26.i1.812

    Article  Google Scholar 

  67. Reis VM, Baldani JI, Urquiaga S (2009) Recomendação de uma mistura de estirpes de cinco bactérias fixadoras de nitrogênio para inoculação de cana-de-açúcar: Gluconacetobacter diazotrophicus (BR 11281), Herbaspirillum seropedicae (BR 11335), Herbaspirillum rubrisubalbicans (BR 11504), Azospirillum amazonense (BR 11145) e Burkholderia tropica (BR 11366). Embrapa Agrobiologia/Circular técnica 30. Seropédica, Rio de Janeiro. pp 1519–7328. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/39137/1/CIT30-09. Accessed 05 Oct 2023

  68. Kandel SL, Joubert PM, Doty SL (2017) Bacterial endophyte colonization and distribution within plants. Microorganisms. https://doi.org/10.3390/microorganisms5040077

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ibáñez F, Tonelli ML, Muñoz V, Figueredo MS, Fabra A (2017) Bacterial endophytes of plants: diversity, invasion mechanisms and effects on the host. In: Maheshwari D (ed) Endophytes: Biology and Biotechnology. Sustainable Development and Biodiversity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-66541-2_2

  70. Schultz N, Morais RF, Silva JA et al (2012) Avaliação agronômica de variedades de cana-de-açúcar inoculadas com bactérias diazotróficas e adubadas com nitrogênio. Pesq Agrop Brasileira 47:261–268. https://doi.org/10.1590/S0100-204X2012000200015

    Article  Google Scholar 

Download references

Acknowledgements

To the Graduate Program in Crop Science (PPGF) of Federal Rural Rio de Janeiro University (UFRRJ), to Embrapa Agrobiologia, for its infrastructure and technical support; the Coordination for the Improvement of Higher Education Personnel (CAPES), for granting a scholarship to the first author and other collaborators. This work was partially funded by grants from the Carlos Chagas Research Support Foundation (FAPERJ) the National Council for Scientific Development (CNPq), project number INCT 46/33/2014-2 and

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleudison Gabriel Nascimento Da Silva.

Ethics declarations

Consent to participate

All authors gave their consent to participate.

Consent for publication

All authors gave their consent for the publication of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luiz Henrique Rosa

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Silva, C.G.N., Monteiro, E.d. ., Diniz, P.P. et al. Designing and validation of specific primers for the quantitative detection of bacteria in sugarcane inoculant. Braz J Microbiol 54, 2627–2640 (2023). https://doi.org/10.1007/s42770-023-01144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01144-6

Keywords

Navigation