Skip to main content
Log in

The hidden rainbow: the extensive biotechnological potential of Antarctic fungi pigments

  • Biotechnology and Industrial Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Antarctic continent is an extreme environment recognized mainly by its subzero temperatures. Fungi are ubiquitous microorganisms that stand out even among Antarctic organisms, primarily due to secondary metabolites production with several biological activities. Pigments are examples of such metabolites, which mainly occur in response to hostile conditions. Various pigmented fungi have been isolated from the Antarctic continent, living in the soil, sedimentary rocks, snow, water, associated with lichens, mosses, rhizospheres, and zooplankton. Physicochemical extreme environments provide a suitable setup for microbial pigment production with unique characteristics. The biotechnological potential of extremophiles, combined with concerns over synthetic pigments, has led to a great interest in natural pigment alternatives. Besides biological activities provided by fungal pigments for surviving in extreme environments (e.g., photoprotection, antioxidant activity, and stress resistance), it may present an opportunity for biotechnological industries. This paper reviews the biotechnological potential of Antarctic fungal pigments, with a detailed discussion over the biological role of fungal pigments, potential industrial production of pigments from extremophilic fungi, pigments toxicity, current market perspective and published intellectual properties related to pigmented Antarctic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lagashetti AC, Dufossé L, Singh SK et al Fungal pigments and their prospects in different industries. Microorganisms 7 Epub ahead of print 2019. https://doi.org/10.3390/microorganisms7120604

  2. Aman Mohammadi M, Ahangari H, Mousazadeh S, Hosseini SM, Dufossé L (2022) Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess Biosyst Eng 45(1):1–12. https://doi.org/10.1007/s00449-021-02621-8

    Article  CAS  PubMed  Google Scholar 

  3. El-Sayed ER, Gach J, Olejniczak T, Boratyński F (2022) A new endophyte Monascus ruber SRZ112 as an efficient production platform of natural pigments using agro-industrial wastes. Sci Rep 12(1):12611. https://doi.org/10.1038/s41598-022-16269-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tuli HS, Chaudhary P, Beniwal V et al (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678

    CAS  PubMed  Google Scholar 

  5. Rana B, Bhattacharyya M, Patni B et al The realm of microbial pigments in the food color market. Front Sustain Food Syst 5 Epub ahead of print 2021. https://doi.org/10.3389/fsufs.2021.603892

  6. Venil CK, Velmurugan P, Dufossé L et al Fungal pigments: potential coloring compounds for wide ranging applications in textile dyeing. J Fungi 6 Epub ahead of print 1 June 2020. https://doi.org/10.3390/jof6020068

  7. Nicolas JP, Bromwich DH (2011) Climate of West Antarctica and influence of marine air intrusions. J Clim 24:49–67

    Google Scholar 

  8. Ruisi S, Barreca D, Selbmann L et al (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Google Scholar 

  9. Coleine C, Stajich JE, Zucconi L et al (2018) Antarctic cryptoendolithic fungal communities are highly adapted and dominated by Lecanoromycetes and Dothideomycetes. Front Microbiol 9 Epub ahead of print. https://doi.org/10.3389/fmicb.2018.01392

  10. Singh O, v., Gabani P. (2011) Extremophiles: radiation resistance microbial reserves and therapeutic implications. J Appl Microbiol 110:851–861

    CAS  PubMed  Google Scholar 

  11. Harding T, Jungblut AD, Lovejoy C et al (2011) Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243

    CAS  PubMed  PubMed Central  Google Scholar 

  12. de Maayer P, Anderson D, Cary C et al (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517

    PubMed  PubMed Central  Google Scholar 

  13. Pulschen AA, Rodrigues F, Duarte RTD et al (2015) UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology. Microbiol Open 4:574–588

    CAS  Google Scholar 

  14. Kreusch MG, Duarte RTD (2021) Photoprotective compounds and radioresistance in pigmented and non-pigmented yeasts. Appl Microbiol Biotechnol 105:3521–3532

    CAS  PubMed  Google Scholar 

  15. Mueller DR, Vincent WF, Bonilla S et al (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. In: FEMS microbiology ecology, pp 73–87

    Google Scholar 

  16. Mitrović T, Stamenković S, Cvetković V et al (2011) Lichens as source of versatile bioactive compounds

    Google Scholar 

  17. Caro Y, Venkatachalam M, Lebeau J, Fouillaud M, Dufossé, L (2015) Pigments and colorants from filamentous fungi. In: Mérillon J-M, Ramawat KG (eds) Fungal Metabolities. Switzerland: Cham, pp 15–18

  18. Rao MPN, Min X, Li W-J (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol 8 Epub ahead of print. https://doi.org/10.3389/fmicb.2017.01113

  19. Sajid S, Akbar N (2018) Applications of fungal pigments in biotechnology. Pure Appl Biol 7:922–930

    CAS  Google Scholar 

  20. Mata-Gómez LC, Montañez JC, Méndez-Zavala A et al (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Factories 13:1–11

    Google Scholar 

  21. Kumar JIN, Bora A, Amb MK (2010) Chronic toxicity of the triazole fungicide tebuconazole on a heterocystous, nitrogen-fixing rice paddy field cyanobacterium, Westiellopsis prolifica Janet. J Microbiol Biotechnol 20:1134–1139

    CAS  Google Scholar 

  22. Reis-Mansur MCPP, Cardoso-Rurr JS, Silva JVMA et al Carotenoids from UV-resistant Antarctic microbacterium sp. LEMMJ01. Sci Rep 9 Epub ahead of print 1 December 2019. https://doi.org/10.1038/s41598-019-45840-6

  23. Núñez-Pons L, Avila C, Romano G et al UV-protective compounds in marine organisms from the southern ocean. Mar Drugs 16 Epub ahead of print 2018. https://doi.org/10.3390/md16090336

  24. Besaratinia A, Bates SE, Synold TW et al (2004) Similar mutagenicity of photoactivated porphyrins and ultraviolet a radiation in mouse embryonic fibroblasts: involvement of oxidative DNA lesions in mutagenesis. Biochemistry 43:15557–15566

    CAS  PubMed  Google Scholar 

  25. Ravanat JL, Douki T (2016) UV and ionizing radiations induced DNA damage, differences and similarities. Radiat Phys Chem 128:92–102

    CAS  Google Scholar 

  26. Cavicchioli R, Amils R, Wagner D et al (2011) Life and applications of extremophiles. Environ Microbiol 13:1903–1907

    PubMed  Google Scholar 

  27. Órdenes-Aenishanslins N, Anziani-Ostuni G, Vargas-Reyes M et al (2016) Pigments from UV-resistant Antarctic bacteria as photosensitizers in dye sensitized solar cells. J Photochem Photobiol B 162:707–714

    PubMed  Google Scholar 

  28. Akilandeswari P, Pradeep B (2016) Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol 100:1631–1643

    CAS  PubMed  Google Scholar 

  29. Duarte A, de Menezes GCA, Bicas JL et al (2019) Antarctic fungi as producers of pigments. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Switzerland, pp 305–318

    Google Scholar 

  30. Sajjad W, Din G, Rafiq M et al (2020) Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24:447–473

    PubMed  PubMed Central  Google Scholar 

  31. Cordero RJB, Vij R, Casadevall A (2017) Microbial melanins for radioprotection and bioremediation. Microb Biotechnol 10:1186–1190

    PubMed  PubMed Central  Google Scholar 

  32. Vasileva-Tonkova E, Romanovskaya V, Gladka G et al (2014) Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, maritime Antarctica. World J Microbiol Biotechnol 30:1387–1398

    CAS  PubMed  Google Scholar 

  33. Alcaíno J, Romero I, Niklitschek M et al (2014) Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors. PLoS One 9:1–12

    Google Scholar 

  34. Villarreal P, Carrasco M, Barahona S et al (2016) Tolerance to ultraviolet radiation of psychrotolerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content. Curr Microbiol 72:94–101

    CAS  PubMed  Google Scholar 

  35. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5(3):301–309 ISSN 1369-5274. https://doi.org/10.1016/S13695274(02)00329-6

    Article  CAS  PubMed  Google Scholar 

  36. Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74:1–16

    CAS  PubMed  Google Scholar 

  37. Rapoport A, Guzhova I, Bernetti L et al Carotenoids and some other pigments from fungi and yeasts. Metabolites 11 Epub ahead of print 2021. https://doi.org/10.3390/metabo11020092

  38. Duarte B, Feijão E, Goessling JW et al Pigment and fatty acid production under different light qualities in the diatom phaeodactylum tricornutum. Applied Sci (Switzerland) 11 Epub ahead of print 2021. https://doi.org/10.3390/app11062550

  39. Koyama Y (1991) Structures and functions of carotenoid in photosynthetic systems. J Photochem Photobiol B 9:265–280

    CAS  Google Scholar 

  40. Silva TR, Silva TR, Silva LC, de Queiroz AC et al (2021) Pigments from Antarctic bacteria and their biotechnological applications. Crit Rev Biotechnol 41:809–826

    PubMed  Google Scholar 

  41. Lovisa S, Kalluri R (2018) Fatty acid oxidation regulates the activation of endothelial-to-mesenchymal transition. Trends Mol Med 24:432–434

    CAS  PubMed  Google Scholar 

  42. Toti E, Oliver Chen CY, Palmery M et al (2018Epub ahead of print 2018) Non-provitamin a and provitamin a carotenoids as immunomodulators: recommended dietary allowance, therapeutic index, or personalized nutrition? Oxidative Med Cell Longev https://doi.org/10.1155/2018/4637861

  43. Sen T, Barrow CJ, Deshmukh SK (2019Epub ahead of print 2019) Microbial pigments in the food industry—challenges and the way forward. Front Nutr 6. https://doi.org/10.3389/fnut.2019.00007

  44. Zhang C, Chen X, Too HP (2020) Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook. Appl Microbiol Biotechnol 104:5725–5737

    CAS  PubMed  Google Scholar 

  45. Garcia-Cortes A, Garcia-Vásquez JA, Aranguren Y et al (2021) Pigment production improvement in rhodotorula mucilaginosa ajb01 using design of experiments. Microorganisms 9:1–14

    Google Scholar 

  46. Usmani Z, Sharma M, Awasthi AK et al Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresour Technol 322 Epub ahead of print 1 February 2021. https://doi.org/10.1016/j.biortech.2020.124548

  47. Metličar V, Vovk I, Albreht A Japanese and bohemian knotweeds as sustainable sources of carotenoids. Plants 8 Epub ahead of print 2019. https://doi.org/10.3390/plants8100384

  48. Pandey N, Jain R, Pandey A et al (2018) Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology 9:81–92

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh SM, Singh PN, Singh SK et al (2014) Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills, Antarctica. Polar Rec 50:31–36

    Google Scholar 

  50. van Euler H, Hellström H (1934) Über Asterinsäure, eine Carotinoidsäure aus Seesternen. Hoppe Seylers Z Physiol Chem 233:89–97

    Google Scholar 

  51. Wolf FT, Wolf FA (1955) The carotenoid pigments of the cedar apple rust fungus. Experientia 11:179–180

    CAS  Google Scholar 

  52. Buzzini P, Turchetti B, Yurkov A (2018) Extremophilic yeasts: the toughest yeasts around? Yeast 35:487–497

    CAS  PubMed  Google Scholar 

  53. Vaz ABM, Rosa LH, Vieira MLA et al (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Godinho VM, Furbino LE, Santiago IF et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Goecke F, Labes A, Wiese J, Imhoff J (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–300. https://doi.org/10.3354/meps08607

    Article  CAS  Google Scholar 

  56. Slominski A, Wortsman J, Plonka PM et al (2005) Hair follicle pigmentation. J Invest Dermatol 124:13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ambrico M (2016) Special issue: melanin, a long lasting history bridging natural pigments and organic bioelectronics. Polym Int 65:1249–1250

    CAS  Google Scholar 

  58. Freitas DF (2017) Caracterização e produção de melanina pelo fungo nematófago Duddingtonia flagrans e avaliação da sua participação na atividade predatóriaThesis. Universidade Estadual do Norte Fluminense Darcy Fibeiro

    Google Scholar 

  59. Bell AA, Wheeler MH. Biosynthesis and functions of fungal melanins, www.annualreviews.org (1986).

    Google Scholar 

  60. Eisenman HC, Nosanchuk JD, Webber JBW et al (2005) Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44:3683–3693

    CAS  PubMed  Google Scholar 

  61. Hikosaka K, El-Abasy M, Koyama Y et al (2007) Immunostimulating effects of the polyphenol-rich fraction of sugar cane (Saccharum officinarum L.) extract in chickens. Phytother Res 21:120–125

    CAS  PubMed  Google Scholar 

  62. Baker LG, Specht CA, Donlin MJ et al (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6:855–867

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Banks IR, Specht CA, Donlin MJ et al (2005) A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 4:1902–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  64. de Hoog GS, Vicente VA, Gorbushina AA (2013) The bright future of darkness-the rising power of black fungi: black yeasts, microcolonial fungi, and their relatives. Mycopathologia 175:365–368

    PubMed  Google Scholar 

  65. Rosa LH, Vaz ABM, Caligiorne RB et al (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Google Scholar 

  66. de Hoog GS, Universitat Rovira i Virgili (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures; Universitat Rovira i Virgili

  67. Pacelli C, Cassaro A, Maturilli A et al (2020) Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Appl Microbiol Biotechnol 104:6385–6395

    CAS  PubMed  Google Scholar 

  68. Chyizhanska N, Beregova T (2009) Effect of melanin isolated from antarctic yeasts on preservation of pig livestock after ablactation

  69. Liu R, Meng X, Mo C et al (2022) Melanin of fungi: from classification to application. World J Microbiol Biotechnol 38:228. https://doi.org/10.1007/s11274-022-03415-0

    Article  CAS  PubMed  Google Scholar 

  70. Oh JJ, Kim JY, Kim YJ, Kim S, Kim GH (2021) Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.129884

  71. Li S, Yang L, Li J, Chen T, Ye M (2019) Structure, molecular modification, and anti-radiation activity of melanin from Lachnum YM156 on ultraviolet B-induced injury in mice. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-018-2898-9

  72. Ye Z, Lu Y, Zong S, Yang L, Shaikh F, Li J, Ye M (2018) Structure, molecular modification and anti-tumor activity of melanin from Lachnum singerianum. Process Biochem. https://doi.org/10.1016/j.procbio.2018.09.007

  73. Bin L, Wei L, Xiaohong C et al (2012) In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. Ann Microbiol 62:1523–1530. https://doi.org/10.1007/s13213-011-0406-3

    Article  CAS  Google Scholar 

  74. Petrosyan T et al (2019) In-vitro effects of bacterial melanin in macrophage “RAW 264.7” cell culture. https://doi.org/10.3233/NIB-190162

    Book  Google Scholar 

  75. Cordero RJB, Casadevall A (2020) Quick guide melanin. Curr Biol Magazine 30:R142–R143

    CAS  Google Scholar 

  76. Cunha MM, Franzen AJ, Seabra SH, Herbst MH, Vugman NV, Borba LP, de Souza W, Rozental S (2010) Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol. https://doi.org/10.1186/1471-2180-10-80

  77. Hu Z, Zhang X, Wu Z et al (2012) Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 94:81–89

    CAS  PubMed  Google Scholar 

  78. Isbrandt T, Tolborg G, Ødum A et al (2020) Atrorosins: a new subgroup of Monascus pigments from Talaromyces atroroseus. Appl Microbiol Biotechnol 104:615–622

    CAS  PubMed  Google Scholar 

  79. Sweeny JG, Estrada-Valdes MC, Iacobucci GA et al (1981) Photoprotection of the red pigments of Monascus anka in aqueous media in 1,4,6-trihydroxynaphthalene. J Agric Food Chem 29:1189–1193

    CAS  Google Scholar 

  80. Chen G, Yang S, Wang C et al (2020) Investigation of the mycelial morphology of Monascus and the expression of pigment biosynthetic genes in high-salt-stress fermentation. Appl Microbiol Biotechnol 104:2469–2479

    CAS  PubMed  Google Scholar 

  81. Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440

    CAS  PubMed  Google Scholar 

  82. He Y, Liu J, Chen Q et al (2020) Monascus sanguineus may be a natural Nothospecies. Front Microbiol 11:1–6

    Google Scholar 

  83. Zucconi L, Canini F, Temporiti ME et al Extracellular enzymes and bioactive compounds from antarctic terrestrial fungi for bioprospecting. Int J Environ Res Public Health 17 Epub ahead of print 2 September 2020. https://doi.org/10.3390/ijerph17186459

  84. Fouillaud M, Venkatachalam M, Girard-Valenciennes E et al Anthraquinones and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar Drugs 14 Epub ahead of print 2016. https://doi.org/10.3390/md14040064

  85. Friedman M, Xu A, Lee R et al (2020) The inhibitory activity of anthraquinones against pathogenic protozoa, bacteria, and fungi and the relationship to structure. Molecules 25:1–12

    Google Scholar 

  86. Heo YM, Kim K, Kwon SL et al (2018) Investigation of filamentous fungi producing safe, functional water-soluble pigments. Mycobiology 46:269–277

    PubMed  PubMed Central  Google Scholar 

  87. Gomes ECQ, Godinho VM, Silva DAS et al (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    CAS  PubMed  Google Scholar 

  88. Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99

    CAS  Google Scholar 

  89. Dufossé L, Fouillaud M, Caro Y et al (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61

    PubMed  Google Scholar 

  90. de Carvalho J, Cardoso L, Ghiddi V et al (2014) Biotransformation of waste biomass into high value biochemicals. In: Brar SK (ed) Biotransformation of waste biomass into high value biochemicals. Springer, New York, pp 73–97

    Google Scholar 

  91. Dimitrova S, Pavlova K, Lukanov L et al (2013) Production of metabolites with antioxidant and emulsifying properties by antarctic strain sporobolomyces salmonicolor AL1. Appl Biochem Biotechnol 169:301–311

    CAS  PubMed  Google Scholar 

  92. Barahona S, Yuivar Y, Socias G et al (2016) Identification and characterization of yeasts isolated from sedimentary rocks of union glacier at the Antarctica. Extremophiles 20:479–491

    CAS  PubMed  Google Scholar 

  93. Trochine A, Turchetti B, Vaz ABM et al (2017) Description of Dioszegia patagonica sp. nov., a novel carotenogenic yeast isolated from cold environments. Int J Syst Evol Microbiol 67:4332–4339

    CAS  PubMed  Google Scholar 

  94. Mussagy CU (2019) Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biotechnol 103:1095–1114

    CAS  PubMed  Google Scholar 

  95. Dimitrova S, Pavlova K, Lukanov L et al (2010) Synthesis of coenzyme Q10 and β-carotene by yeasts isolated from Antarctic soil and lichen in response to ultraviolet and visible radiations. Appl Biochem Biotechnol 162:795–804

    CAS  PubMed  Google Scholar 

  96. Gmoser R, Ferreira JA, Lennartsson PR et al Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol 4 Epub ahead of print 2017. https://doi.org/10.1186/s40694-017-0033-2

  97. Ding L, Huang H, Lu F et al Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature. J Ind Microbiol Biotechnol 49 Epub ahead of print 2022. https://doi.org/10.1093/jimb/kuab073

  98. Velmurugan P, Kim M-J, Park J-S et al (2010) Dyeing of cotton yarn with five water soluble fungal pigments obtained from five fungi. Fibers Polym 11:598–605

    CAS  Google Scholar 

  99. Lehto S, Buchweitz M, Klimm A et al (2017) Comparison of food colour regulations in the EU and the US: a review of current provisions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34:335–355

    CAS  PubMed  Google Scholar 

  100. Jurić S, Jurić M, Król-Kilińska Ż et al (2020) Sources, stability, encapsulation and application of natural pigments in foods. Food Rev Int. Epub ahead of print. https://doi.org/10.1080/87559129.2020.1837862

  101. Jeswal P, Kumar D (2015. Epub ahead of print 2015) Mycobiota and natural incidence of aflatoxins, ochratoxin A, and citrinin in Indian spices confirmed by LC-MS/MS. Int J Microbiol, DOI. https://doi.org/10.1155/2015/242486

  102. Hamano PS, Kilikian B, v. (2006) Production of red pigments by Monascus ruber in culture media containing corn steep liquor. Braz J Chem Eng 23:443–449

    CAS  Google Scholar 

  103. Agboyibor C, Kong WB, Chen D et al Monascus pigments production, composition, bioactivity and its application: a review. Elsevier Ltd. Epub ahead of print 2018. https://doi.org/10.1016/j.bcab.2018.09.012

  104. Liang B, Du XJ, Li P et al (2018) Investigation of citrinin and pigment biosynthesis mechanisms in monascus purpureus by transcriptomic analysis. Front Microbiol 9:1–11

    Google Scholar 

  105. Blanc PJ, Loret MO, Goma G et al (1995) Received as revised 7th January) Production, vol 17, pp 291–294

    Google Scholar 

  106. Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307

    CAS  PubMed  Google Scholar 

  107. Hong JL, Wu L, Lu JQ, Zhou WB, Cao YJ, Lv WL, Liu B, Rao PF, Ni L, Lv XC (2020) Comparative transcriptomic analysis reveals the regulatory effects of inorganic nitrogen on the biosynthesis of Monascus pigments and citrinin. RSC Adv. https://doi.org/10.1039/c9ra09760k

  108. Kang B, Zhang X, Wu Z, Wang Z, Park S (2014) Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzym Microb Technol. https://doi.org/10.1016/j.enzmictec.2013.12.007

  109. Ketkaeo S, Sanpamongkolchai W, Morakul S, Baba S, Kobayashi G, Goto M (2020) Induction of mutation in Monascus purpureus isolated from Thai fermented food to develop low citrinin-producing strain for application in the red koji industry. J Gen Appl Microbiol. https://doi.org/10.2323/jgam.2019.04.008

  110. Appelhagen I, Wulff-Vester AK, Wendell M et al (2018) colour bio-factories: towards scale-up production of anthocyanins in plant cell cultures. Metab Eng 48:218–232

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ambati RR, Gogisetty D, Aswathanarayana RG et al (2019) Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr 59:1880–1902

    CAS  PubMed  Google Scholar 

  112. Novoveská L, Ross ME, Stanley MS et al (2019) microalgal carotenoids: a review of production, current markets, regulations, and future direction. Mar drugs 17:1–21

    Google Scholar 

  113. Silva MB, Feitosa AO, Lima IGO, Bispo JRS, Santos ACM, Moreira MSA, Câmara PEAS, Rosa LH, Oliveira VM, Duarte AWF, Queiroz AC (2022) Antarctic organisms as a source of antimicrobial compounds: a patent review. An Acad Bras Cienc. https://doi.org/10.1590/0001-3765202220210840

  114. Bej AK (2015) Anticancer and antimicrobial compounds from antarctic extremophilic microorgansims. Assignee: Uab Research Foundation. US8956669B2

    Google Scholar 

  115. Eroglu A, Hruszkewycz DP, Sena C et al (2012) Naturally occurring eccentric cleavage products of provitamin a β-carotene function as antagonists of retinoic acid receptors*. J Biol Chem. https://doi.org/10.1074/jbc.M111.325142

  116. Larroude M, Celinska E, Back A et al (2018) A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnol Bioeng. https://doi.org/10.1002/bit.26473

  117. Papaioannou M, Liakopoulou-Kyriakides M, Karabelas AJ (2016) Natural origin lycopene and its “green” downstream processing. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2013.817381

  118. Surwase SN, Jadhav SB, Phugare SS, Jadhav JP (2013) Optimization of melanin production by Brevundimonas sp SGJ using response surface methodology. Biotech. https://doi.org/10.1007/s13205-012-0082-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Robl.

Ethics declarations

Ethical approval

Not required.

Consent to participate

Not applicable.

Consent for publication

The authors are in accordance with the submission of this manuscript to the Brazilian Journal of Microbiology.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: María Martha Martorell

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcante, S.B., dos Santos Biscaino, C., Kreusch, M.G. et al. The hidden rainbow: the extensive biotechnological potential of Antarctic fungi pigments. Braz J Microbiol 54, 1675–1687 (2023). https://doi.org/10.1007/s42770-023-01011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01011-4

Keywords

Navigation