Skip to main content

Advertisement

Log in

Candidemia in Brazilian neonatal intensive care units: risk factors, epidemiology, and antifungal resistance

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Candidemia is responsible for substantial morbidity and mortality in neonatal intensive care units and represents a challenge due to the complexity of hospitalized neonates, the deficiency in approved and precise diagnostic techniques, and the increasing number of species resistant to antifungal agents. Thus, the objective of this study was to detect candidemia among neonates evaluating the risk factors, epidemiology, and antifungal susceptibility. Blood samples were obtained from neonates with suspected septicemia, and the mycological diagnosis was based on yeast growth in culture. The fungal taxonomy was based on classic identification, automated system, and proteomic, when necessary molecular tools were used. The in vitro susceptibility tests were performed according to the broth microdilution method from Clinical and Laboratory Standards Institute. Statistical analysis was performed using the R software version R-4.2.2. The prevalence of neonatal candidemia was 10.97%. The major risk factors involved were previous use of parenteral nutrition, exposure to broad-spectrum antibiotics, prematurity, and prior use central venous catheter, but only this last was statistically associated with mortality risk. Species from Candida parapsilosis complex and C. albicans were the most frequent. All isolates were susceptible to amphotericin B, except C. haemulonii that also exhibited elevated MICs to fluconazole. C. parapsilosis complex and C. glabrata exhibit the highest MICs to echinocandins. Considering these data, we emphasize that an effective management strategy to reduce the impact of neonatal candidemia should involve the knowledge of risk factors, rapid and precise mycological diagnostic, and tests of antifungal susceptibility to help in the selection of an appropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available to protect our participants’ sensitive data but are available from the corresponding author on reasonable request.

References

  1. Chen YN, Hsu JF, Chu SM et al (2022) Clinical and microbiological characteristics of neonates with candidemia and impacts of therapeutic strategies on the outcomes. J Fungi 8(5):465. https://doi.org/10.3390/jof8050465

    Article  CAS  Google Scholar 

  2. Harrington R, Kindermann SL, Hou Q, Taylor RJ, Azie N, Horn DL (2017) Candidemia and invasive candidiasis among hospitalized neonates and pediatric patients. Curr Med Res Opin 33(10):1803–1812. https://doi.org/10.1080/03007995.2017.1354824

    Article  PubMed  Google Scholar 

  3. Sousa RA, Diniz LMO, Marinho FEL, Rezende LG, Carellos EM, de Castro Romanelli RM (2021) Risk factors for candidemia in neonates: systematic review and meta-analysis. J Neonatal Nurs 28:83–92. https://doi.org/10.1016/j.jnn.2021.08.013

    Article  Google Scholar 

  4. Chen J, Jiang Y, Wei B, Ding Y, Xu S, Qin P et al (2016) Epidemiology of and risk factors for neonatal candidemia at a tertiary care hospital in western China. BMC Infect Dis 16(1):700

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kaufman DA, Brown AT, Eisenhuth KK, Yue J, Grossman LB, Hazen KC (2014) More serious infectious morbidity and mortality associated with simultaneous candidemia and coagulase-negative staphylococcal bacteremia in neonates and in vitro adherence studies between Candida albicans and Staphylococcus epidermidis. Early Human Dev 90:S66–S70. https://doi.org/10.1016/s0378-3782(14)70021-0

    Article  Google Scholar 

  6. Ismail WNAW, Jasmi N, Khan TM, Hong YH, Neoh CF (2020) The economic burden of candidemia and invasive candidiasis: a systematic review. Value Health Reg Issues 21:53–58. https://doi.org/10.1016/j.vhri.2019.07.002

    Article  Google Scholar 

  7. Hassan DM, Yousef RHA, Abu Elhamed WA, Ali AA, Madkour LA (2019) Candidemia in the neonatal intensive care unit: insights on epidemiology and antifungal drug susceptibility patterns. Arch Pediatr Infect Dis 7(1):e81090. https://doi.org/10.5812/pedinfect.81090

    Article  Google Scholar 

  8. Steinbach WJ (2016) Pediatric invasive candidiasis: epidemiology and diagnosis in children. J Fungi 2(1):5. https://doi.org/10.3390/2Fjof2010005

    Article  Google Scholar 

  9. Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20(s6):5–10. https://doi.org/10.1111/1469-0691.12539

    Article  PubMed  Google Scholar 

  10. Barantsevich N, Barantsevich E (2022) Diagnosis and treatment of invasive candidiasis. Antibiotics 11(6):718. https://doi.org/10.3390/antibiotics11060718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Natarajan G, Lulic-Botica M, Rongkavilit C, Pappas A, Bedard M (2005) Experience with caspofungin in the treatment of persistent fungemia in neonates. J Perinatol 25:770–777. https://doi.org/10.1038/sj.jp.7211380

    Article  CAS  PubMed  Google Scholar 

  12. Celebi S, Hacimustafaoglu M, Ozdemir O, Ozkaya G (2007) Nosocomial candidaemia in children: results of a 9-year study. Mycoses 51:248–257. https://doi.org/10.1111/j.1439-0507.2007.01464.x

    Article  Google Scholar 

  13. Barnett JA, Paine RW, Yarrow D (2000) Yeasts: characteristics and identification. Cambridge University Press, Cambridge

    Google Scholar 

  14. De Hoog GS, Guarro J, Gene J, Figueras MJ.Atlas of clinical fungi (2nd edition). Holland: CBS; 215–216, 2000

  15. Putignani L, Del Chierico F, Onori M et al (2011) MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. Mol BioSyst Online Pub 7(3):620–629. https://doi.org/10.1039/c0mb00138d

    Article  CAS  Google Scholar 

  16. Veen SQ, Claas ECJ, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization–time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907. https://doi.org/10.1128/jcm.02071-09

    Article  PubMed  PubMed Central  Google Scholar 

  17. White TJBT, Lee S, Taylor J (1990) Amplification and direct sequence of fungal ribosomal RNA genes for phylogenetics. In: Innis MAGD, Sninsky J, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  18. Silva CM, Carvalho-Parahym AMR, Leão MPC, Oliveire NT, Amorim RJM, Neve RP (2013) Fungemia by Candida pelliculosa (Pichia anomala) in a neonatal intensive care unit: a possible clonal origin. Mycopathologia 175:175–179. https://doi.org/10.1007/s11046-012-9605-0

    Article  PubMed  Google Scholar 

  19. Clinical and Laboratory Standards Institute (CLSI) (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard, 3rd ed. CLSI document M27-A3, Wayne, PA

  20. Clinical and Laboratory Standards Institute (CLSI) (2020) Performance standards for antifungal susceptibility testing of yeasts. 2nd ed. CLSI supplement M60. Wayne, PA

  21. Pfaller MA, Diekema DJ (2012) Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol 50:2846–2856. https://doi.org/10.1128/JCM.00937-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clinical and Laboratory Standards Institute (CLSI) (2018) M59. Epidemiological cutoff values for antifungal susceptibility testing Wayne: Clinical and Laboratory Standards Institute

  23. Kumar M, Barnawal RK, Prasad A, Sharma AK, Seema K, Priydarshini V (2018) Candida species isolated from blood culture in neonatal septicemia patients admitted at RIMS. Ranchi. Int J Med Res Prof 4(1):622–25. https://doi.org/10.21276/ijmrp.2018.4.1.136

    Article  Google Scholar 

  24. Montagna MT, Lovero G, Borghi E, Amato G, Andreoni S, Campion L et al (2014) Candidemia in intensive care unit: a nationwide prospective observational survey (GISIA-3 study) and review of the European literature from 2000 through 2013. Eur Rev Med Pharmacol Sci 18(5):661–674

    CAS  PubMed  Google Scholar 

  25. Jalil RA, Islam KS, Barai L, Akhter S (2021) Neonatal sepsis due to non-albicans Candida species and their susceptibility to antifungal agents: first report from Bangladesh. IMC J Med Sci 14(2):19–26

    Article  Google Scholar 

  26. Eissa OAFA, Mohammed HA, Attya TH, Amr GE (2020) Candidemia in preterm infants in neonatal intensive care unit at Zagazig University Hospitals. Egypt J Hosp Med 81(3):1603–1608. https://doi.org/10.21608/ejhm.2020.116787

    Article  Google Scholar 

  27. Lamba M, Sharma D, Sharma R, Vyas A, Mamoria V (2021) To study the profile of Candida isolates and antifungal susceptibility pattern of neonatal sepsis in a tertiary care hospital of North India. J Matern Fetal Neonatal Med 34(16):2655–2659. https://doi.org/10.1080/14767058.2019.1670799

    Article  CAS  PubMed  Google Scholar 

  28. Asadzadeh M, Ahmad S, Al-Sweih N, Hagen F, Meis JF, Khan Z (2019) High-resolution fingerprinting of Candida parapsilosis isolates suggests persistence and transmission of infections among neonatal intensive care unit patients in Kuwait. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-018-37855-2

    Article  CAS  Google Scholar 

  29. Pammi M, Holland L, Butler G, Gacser A (2013) Candida parapsilosis is a significant neonatal pathogen: a systematic review and meta-analysis. Pediatr Infect Dis J 32:1–23. https://doi.org/10.1097/inf.0b013e3182863a1c

    Article  Google Scholar 

  30. Delfino D et al (2014) Potential association of specific Candida parapsilosis genotypes, bloodstream infections and colonization of health workers’ hands. Clin Microbiol Infect 20:O946–O951. https://doi.org/10.1111/1469-0691.12685

    Article  CAS  PubMed  Google Scholar 

  31. Tavanti A, Davidson AD, Gow NA, Maiden MC, Odds FC (2005) Candida orthopsilosis and Candida metapsilosis spp. Nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol 43:284–292. https://doi.org/10.1128/2FJCM.43.1.284-292.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samantaray S, Singh R (2022) Evaluation of MALDI-TOF MS for identification of species in the Candida parapsilosis complex from candidiasis cases. J Appl Lab Med 30;7(4):889–900 https://doi.org/10.1093/jalm/jfac005

  33. Maria S, Barnwal G, Kumar A, Mohan K, Vinod V, Varghese A, Biswas R (2018) Species distribution and antifungal susceptibility among clinical isolates of Candida parapsilosis complex from India. Revista Iberoamericana de Micologia 35(3):147–150. https://doi.org/10.1016/j.riam.2018.01.004

    Article  PubMed  Google Scholar 

  34. Ahmad S, Khan ZU, Johny M, Ashour NM, Al-Tourah WH, Joseph L, Chandy R (2013) Isolation of Lodderomyces elongisporus from the catheter tip of a fungemia patient in the Middle East. Case Rep Med. https://doi.org/10.1155/2013/560406

    Article  PubMed  PubMed Central  Google Scholar 

  35. Asadzadeh M, Al-Sweih N, Ahmad S, Khan S, Alfouzan W, Joseph L (2022) Fatal Lodderomyces elongisporus fungemia in a premature, extremely low-birth-weight neonate. J Fungi 8(9):906. https://doi.org/10.3390/jof8090906

    Article  CAS  Google Scholar 

  36. Koh B, Halliday C, Chan R (2020) Concurrent bloodstream infection with Lodderomyces elongisporus and Candida parapsilosis. Med Mycol Case Rep 28:23–25. https://doi.org/10.1016/2Fj.mmcr.2020.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee HY, Kim SJ, Kim D, Jang J et al (2017) Catheter-related bloodstream infection due to Lodderomyces elongisporus in a patient with lung cancer. Ann Lab Med 38(2):182–184. https://doi.org/10.3343/2Falm.2018.38.2.182

    Article  PubMed Central  Google Scholar 

  38. Lin HC, Lin HY, Su BH, Ho MW, Ho CM, Lee CY et al (2013) Reporting an outbreak of Candida pelliculosa fungemia in a neonatal intensive care unit. J Microbiol Immunol Infect 46(6):456–462. https://doi.org/10.1016/j.jmii.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Wu W, Ding L, Yang L, Su J, Wu B (2021) Two different clones of Candida pelliculosa bloodstream infection in a tertiary neonatal intensive care unit. J Infect Dev Countries 15(06):870–876. https://doi.org/10.3855/jidc.12103

    Article  CAS  Google Scholar 

  40. Kim S, Ko KS, Moon SY, Lee MS, Son JS (2011) Catheter-related candidemia caused by Candida haemulonii in a patient in long-term hospital care. J Korean Med Sci 26(2):297–300. https://doi.org/10.3346/jkms.2011.26.2.297

    Article  PubMed  PubMed Central  Google Scholar 

  41. Silva CM, Carvalho-Parahym AM, Macêdo DP, Lima-Neto RG, Francisco EC, Melo AS, Neves RP (2015) Neonatal candidemia caused by Candida haemulonii: case report and review of literature. Mycopathologia 180(1):69–73. https://doi.org/10.1007/s11046-015-9872-7

    Article  PubMed  Google Scholar 

  42. Lima SL, Rossato L, de AzevedoMelo AS (2020) Evaluation of the potential virulence of Candida haemulonii species complex and Candida auris isolates in Caenorhabditis elegans as an in vivo model and correlation to their biofilm production capacity. Microb Pathog 148:104461. https://doi.org/10.1016/j.micpath.2020.104461

    Article  CAS  PubMed  Google Scholar 

  43. Caggiano G, Lovero G, De Giglio O, Barbuti G, Montagna O, Laforgia N, Montagna M (2017) Candidemia in the neonatal intensive care unit: a retrospective, observational survey and analysis of literature data. Biomed Res Int 2017:7901763. https://doi.org/10.1155/2017/7901763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marak MB, Dhanashree B (2018) Antifungal susceptibility and biofilm production of Candida spp. isolated from clinical samples. Int J Microbiol 2018:7495218. https://doi.org/10.1155/2018/7495218

  45. Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S et al (2017) Multidrug-resistant Candida haemulonii and C. auris, tel aviv, Israel. Emerg Infect Dis 23(2):195. https://doi.org/10.3201/2Feid2302.161486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yenisehirli G, Bulut N, Yenisehirli A, Bulut Y (2015) In vitro susceptibilities of Candida albicans isolates to antifungal agents in Tokat, Turkey. Jundishapur J Microbiol 8(9):e28057. https://doi.org/10.5812/2Fjjm.28057

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pristov KE, Ghannoum MA (2019) Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 25(7):792–798. https://doi.org/10.1016/j.cmi.2019.03.028

    Article  CAS  PubMed  Google Scholar 

  48. Papp C, Kocsis K, Tóth R, Bodai L, Willis JR, Ksiezopolska E, Lozoya-Pérez NE, Vágvölgyi C, Mora Montes H, Gabaldón T, Nosanchuk JD, Gácser A (2018) Echinocandin-induced microevolution of Candida parapsilosis influences virulence and abiotic stress tolerance. mSphere 14(6):e00547-18. https://doi.org/10.1128/msphere.00547-18

    Article  CAS  Google Scholar 

  49. Willaert RG (2018) Adhesins of yeasts: protein structure and interactions. J Fungi (Basel) 27;4(4):119. https://doi.org/10.3390/jof4040119

Download references

Acknowledgements

We thank the health professionals from the Neonatal Intensive Care Units from the Clinics Hospital PE and Agamenon Magalhães Hospital, for the support and help with the patient’s data, and Dr. Pauliana Valéria Machado Galvão for the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Maria da Silva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Celia Maria de Almeida Soares

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, C.M., de Carvalho, A.M.R., Macêdo, D.P.C. et al. Candidemia in Brazilian neonatal intensive care units: risk factors, epidemiology, and antifungal resistance. Braz J Microbiol 54, 817–825 (2023). https://doi.org/10.1007/s42770-023-00943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00943-1

Keywords

Navigation