Skip to main content

Advertisement

Log in

Bacteria and antimicrobial resistance profile during the composting process of wastes from animal production

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Livestock waste is widely used in agriculture. Although they provide benefits to the soil, and consequently to plants, they have the potential to contaminate the environment, as they contain pathogenic microorganisms and determinants of antimicrobial resistance, if not properly managed. Therefore, this study aims to evaluate the effect of composting horse bedding and poultry litter in organic and conventional production systems on the occurrence of bacteria in the Enterobacteriales order and to identify their antimicrobial resistance profiles. Bacterial strains were isolated from Salmonella-Shigella and eosin methylene blue solid media from animal waste during the composting process that was conducted for 125 days. After isolation, the strains were identified by the MALDI-TOF technique; the disk diffusion test was then performed for phenotypic detection of antimicrobial resistance. A total of 158 bacterial strains were isolated during composting of three wastes. The Enterobacteriaceae family was the most abundant, whereas Proteus mirabilis and Escherichia coli were the species with the highest percentage in the wastes, which also exhibited a multi-resistance profile. Poultry litter showed a greater abundance of resistant bacteria than horse bedding did. Similarly, a greater number of resistant bacteria was detected in conventional poultry litter than in organic poultry litter. The results obtained reinforce that animal wastes are reservoirs of pathogenic bacteria that are resistant to antimicrobials and highlight the importance of developing management strategies that aim to reduce and/or eliminate these contaminants to guarantee their safe use in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Pires AMM, Mattiazzo ME (2008) Avaliação da viabilidade do uso de resíduos na agricultura. Embrapa Meio Ambiente, São Paulo

    Google Scholar 

  2. Burton CH, Turner C (2003) Manure management: treatment strategies for sustainable agriculture. Wrest Park, Silsoe

    Google Scholar 

  3. Chiesa L, Nobile M, Arioli F, Britti D, Trutic N, Pavlovic R, Panseri S (2015) Determination of veterinary antibiotics in bovine urine by liquid chromatography-tandem mass spectrometry. Food Chem 185:7–15. https://doi.org/10.1016/j.foodchem.2015.03.098

    Article  CAS  PubMed  Google Scholar 

  4. Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E, Coukell A (2017) Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence? BMC Vet Res 13:211. https://doi.org/10.1186/s12917-017-1131-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Rollings ASJ, Jones DL, Lee NM, Otten W, Thomas CM (2013) The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Dnfect Dis 13:155–165. https://doi.org/10.1016/S1473-3099(12)70317-1

    Article  CAS  Google Scholar 

  6. Fujii KY, Dittrich JR, Castro EA, Silveira EO (2014) Processos de tratamento de resíduos de cocheira e a redução ou eliminação de ovos e larvas infectantes do gênero Strongylus spp. Arq Inst Biol 81:226–231. https://doi.org/10.1590/1808-1657000482012

    Article  Google Scholar 

  7. Costa AM, Borges EM, Silva AA, Nolla A, Guimarães EC (2009) Potencial de recuperação física de um latossolo vermelho, sob pastagem degradada, influenciado pela aplicação de cama de frango. Ciênc Agrotec 33:1991–1998. https://doi.org/10.1590/S1413-70542009000700050

    Article  Google Scholar 

  8. Larney FJ, Buckley KE, Hao X, Mccaughey WP (2006) Fresh, stockpiled, and composted beef cattle feedlot manure: nutrient levels and mass balance estimates in Alberta and Manitoba. J Environ Qual 35:1844–1854. https://doi.org/10.2134/jeq2005.0440

    Article  CAS  PubMed  Google Scholar 

  9. Larney FJ, Olson AF, Miller JJ, Demaere PR, Zvmuyu F, Mcallister TA (2008) Physical and chemical changes during composting of wood-chip bedded and straw-bedded beef cattle feedlot manure. J Environ Qual 37:725–735. https://doi.org/10.2134/jeq2007.0351

    Article  CAS  PubMed  Google Scholar 

  10. Sá MF, Aita C, Doneda A, Pujol SB, Cantú RR, Jacques IVC, Bastiani GG, Oliveira PD, Lopes PD (2014) Dinâmica da população de coliformes durante a compostagem automatizada de dejetos líquidos de suínos. Arq Bras Med Vet Zootec 66:1197–1206. https://doi.org/10.1590/1678-6135

    Article  Google Scholar 

  11. Dias JE (2007) Monitoramento do uso da terra e dos níveis de nutrientes do solo no Sistema Integrado de Produção Agroecológica utilizando geoprocessamento. Universidade Federal Rural do Rio de Janeiro, Tese

    Google Scholar 

  12. EMBRAPA (1999) Levantamento semidetalhado dos solos da área do Sistema Integrado de Produção Agroecológica (SIPA) – km 47- Seropédica, RJ. Embrapa Solos, Rio de Janeiro

  13. BRASIL (2017) Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente. Resolução CONAMA n° 481, de 03 de outubro de 2017, Diário Oficial da União

  14. ISO 19250 (2010) International Organization for Standardization. Water quality, Detection of Salmonella spp.

  15. Rice EW, Baird RB, Eaton AD, Bridgewater LL (2017) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  16. Ferreira PFA, Xavier JF, Bertholoto DM, Melo DA, Correia TR, Coelho SMO, Souza MMS, Leal MAA, Araújo ES, Coelho IS (2021) Effect of composting on the microbiological and parasitic load in animal production wastes in Brazil. Int J Recycl Org Waste Agric 10:265–273. https://doi.org/10.30486/IJROWA.2021.1909128.1132

    Article  Google Scholar 

  17. BRCAST (2017) Teste sensibilidade aos antimicrianos – Método de disco-difusão EUCAST

  18. BRCAST (2019) Tabelas de pontos de corte para interpretação de CIMs e diâmetros de halos

  19. Oliveira MA, Takamura AE, Arias Vigoya AA, Araújo FE (2015) Enterobacteriaceae: bactérias intestinalis de organismos aquáticos, um risco à saúde pública revisão de literatura. R Cient Eletr Med Vet 25:1–20

    Google Scholar 

  20. Virtuoso MCS, Oliveira DG, Dias LNS, Fagundes PSF, Leite PRSC (2015) Reutilização da cama de frango. Rev Eletrôn Nutr 12:3964–3979

    Google Scholar 

  21. Zhu XY, Zhong T, Pandya Y (2002) 16S Rrna-based analysis of microbiota from cecum of broiler chickens. Appl Environ Microbiol 68:124–137. https://doi.org/10.1128/AEM.68.1.124-137.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barra KC, Fonseca BB, Melo RT, Mendonça EP, Rossi DA (2010) Qualidade microbiológica das cascas de arroz utilizadas nas camas para a criação de frangos de corte. PubVet 4:886–892

    Google Scholar 

  23. Cull CA, Renter DG, Dewsbury DM, Noll LW, Shridhar PB, Ives SE, Nagaraja TG, Cernicchiaro N (2017) Feedlot-and pen-level prevalence of enterohemorrhagic Escherichia coli in feces of commercial feedlot cattle in two major US cattle feeding areas. Foodborne Pathog Dis 14:309–317. https://doi.org/10.1089/fpd.2016.2227

    Article  CAS  PubMed  Google Scholar 

  24. Hu YS, Shin S, Park YH, Park KT (2017) Prevalence and mechanism of fluoroquinolone resistance in Escherichia coli isolated from swine feces in Korea. J Food Prot 80:1145–1151. https://doi.org/10.4315/0362-028X.JFP-16-502

    Article  CAS  PubMed  Google Scholar 

  25. Motta MCD, Spinelli MO, Godoy CMDS, Cruz RJDC, Bortolatto J (2012) Detecção de Proteus mirabilis nas fezes de camundongos spf. R Soc Bras Ci Anim Lab 1:246–250

    Google Scholar 

  26. Pereira CS, Barros PR, Silva PM, Rodrigues DDP (2009) Patógenos isolados do trato gastrintestinal de cães saudáveis no Rio de Janeiro. Arq Bras Med Vet Zootec 61:1000–1001. https://doi.org/10.1590/S0102-09352009000400032

    Article  Google Scholar 

  27. Zappa V, Bolaños CAD, Paula CL, Callefe JLR, Alves AC, Morais ABC, Guerra ST, Cabrini MC, Melville PA, Ribeiro MG (2017) Antimicrobial multiple resistance index, minimum inhibitory concentrations, and extended-spectrum beta-lactamase producers of Proteus mirabilis and Proteus vulgaris strains isolated from domestic animals with various clinical manifestations of infection. Semin Cienc Agrar 38:775–789. https://doi.org/10.5433/1679-0359.2017v38n2p775

    Article  CAS  Google Scholar 

  28. CDC (2019) Outbreak of E. coli Infections Linked to Romaine Lettuce. https://www.cdc.gov/ecoli/2018/o15 7h7–1118/inde x.html. Accessed 20 February 2020

  29. Currie A, Honish L, Cutler J, Locas A, Lavoie MC, Gaulin C, Galanis E, Tschetter L, Chui L, Taylor M, Jamieson F, Gilmour M, Mutti S, Mah V, Hamel M, Martinez A, Buenaventura E, Hoang L, Pacagnella A (2019) Outbreak of Escherichia coli O157:H7 infections linked to mechanically tenderized beef and the largest beef recall in Canada, 2012. J Food Prot 82:1532–1538. https://doi.org/10.4315/0362-028X.JFP-19-005

    Article  CAS  PubMed  Google Scholar 

  30. Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Falcão J, Piazza RMF, Ferreira LC, Martinez MB (2016) Diarrheagenic Escherichia coli. Braz. J Microbiol 47:3–30. https://doi.org/10.1016/j.bjm.2016.10.015

    Article  CAS  Google Scholar 

  31. PHAC (2019) Public Health Notice – Outbreak of E. coli infections linked to romaine lettuce. https://www.canada.ca/en/public-health/services/public-health-notices/2018/public-health-notice-outbreak-e-coli-infections-linked-romaine-lettuce.html. Accessed 18 February 2021

  32. Tack DM, Marder EP, Griffin PM, Cieslak PR, Dunn J, Hurd S, Scallan E, Lathrop S, Muse A, Ryan P, Smith K, Tobin-D’angelo M, Vugia DJ, Holt KG, Wolpert BJ, Tauxe R, Geissler AL (2019) Preliminary incidence and trends of infections with pathogens transmitted commonly through food - Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2015–2018. MMWR Morb Mortal Wkly Rep 68:369–373. https://doi.org/10.15585/mmwr.mm6711a3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sfaciotte RAP, Bordin JT, Vignoto VKC, Heller LM, Pinto AA, Munhoz PM, Barbosa MJB, Wosiacki SR (2014) Descrição de cepas bacterianas multirresistentes isolados de equinos. Rev Ciên Vet Saúde Públ 1:77–77. https://doi.org/10.4025/revcivet.v1i2.25395

    Article  Google Scholar 

  34. Kurihara MNL, Sales ROD, Silva KED, Maciel WG, Simionatto S (2020) Multidrug-resistant Acinetobacter baumannii outbreaks: a global problem in healthcare settings. Rev Soc Bras Med Trop 53:e20200248. https://doi.org/10.1590/0037-8682-0248-2020

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nasr P (2020) Genetics, epidemiology, and clinical manifestations of multidrug-resistant Acinetobacter baumannii. J Hosp Infecti 104:4–11. https://doi.org/10.1016/j.jhin.2019.09.021

    Article  CAS  Google Scholar 

  36. Zhou H, Yao Y, Zhu B, Ren D, Yang Q, Fu Y, Yu Y, Zhou J (2019) Risk factors for acquisition and mortality of multidrug-resistant Acinetobacter baumannii bacteremia: a retrospective study from a Chinese hospital. Medicine 98:e14937. https://doi.org/10.1097/MD.0000000000014937

    Article  PubMed  PubMed Central  Google Scholar 

  37. CDC (2019) Patients: Information about CRE. https://www.cdc.gov/hai/organisms/cre/cre-patients.html#:~:text=Many%20different%20types%20of%20Enterobacteriaceae,%2C%20wound%20infections%2C%20and%20meningitis. Accessed 11 February 2021

  38. Osaili TM, Alaboudi AR, Al-Quran HN, Al-Nabulsi AA (2018) Decontamination and survival of Enterobacteriaceae on shredded iceberg lettuce during storage. Food Microbiol 73:129–136. https://doi.org/10.1016/j.fm.2018.01.022

    Article  CAS  PubMed  Google Scholar 

  39. Said LB, Jouini A, Klibi N, Dziri R, Alonso CA, Boudabous A, Slama KB, Torres C (2015) Detection of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in vegetables, soil and water of the farm environment in Tunisia. Int J Food Microbiol 203:86–92. https://doi.org/10.1016/j.ijfoodmicro.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  40. IAEA (2008) Guidelines for sustainable manure management in Asian livestock production systems. International Atomic Energy Agency, Vienna

    Google Scholar 

  41. QUARTZ (2014) These maps show how the world composts. https://qz.com/2 16261/these-maps-show-how-the-world-composts/. Accesses 16 December 2021

  42. BRASIL (2011) Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 46, de 6 de outubro de 2011, Diário Oficial da República Federativa do Brasil

  43. EU (2002) European Parliament and of the Council. Regulation. (EC) No 1774/2002 of the, de 03 de outubro de 2002. Official Journal

  44. FDA (2018) Food and Drug Administration. Code of Federal Regulations Title 21/21CFR112.55. Código de Regulamento Federal

  45. Miryala SK, Anbarasu A, Ramaiah S (2021) Gene interaction network approach to elucidate the multidrug resistance mechanisms in the pathogenic bacterial strain Proteus mirabilis. J Cell Physiol 236:468–479. https://doi.org/10.1002/jcp.29874

    Article  CAS  PubMed  Google Scholar 

  46. Vading M, Nauclér P, Kalin M, Giske CG (2018) Invasive infection caused by Klebsiella pneumoniae is a disease affecting patients with high comorbidity and associated with high long-term mortality. PLoS One 13:e0195258. https://doi.org/10.1371/journal.pone.0195258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hawkey PM, Jones AM (2009) The changing epidemiology of resistance. J Antimicrob Chemother 64:i3–i10. https://doi.org/10.1093/jac/dkp256

    Article  CAS  PubMed  Google Scholar 

  48. Huang XZ, Frye JG, Chahine MA, Glenn LM, Ake JA, Su W, Nikolich MP, Lesho EP (2012) Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. PLoS One 7:e40360. https://doi.org/10.1371/journal.pone.0040360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martins A, Silva RA, Ferreira LO, Licate MM, Delafiori CR, Pôrto SF (2019) Resistência a antimicrobianos de enterobactérias isoladas de águas destinadas ao abastecimento público na região centro-oeste do estado de São Paulo, Brasil. Rev Pan-Amaz Saúde 10:8–8. https://doi.org/10.5123/s2176-6223201900065

    Article  Google Scholar 

  50. WHO (2017) OMS publica lista de bactérias para as quais se necessitam novos antibióticos urgentemente. https://www.paho.org/bra/index.php?option=com_content&view=article&id=5357:oms-publica-lista-de-ba cterias-para-as-quais-se-necessitam-novos-antibioticos-urgentemente&Itemid=812. Acsessed 1 February 2021.

  51. Havenga B, Ndlovu T, Clements T, Reyneke B, Waso M, Khan W (2019) Exploring the antimicrobial resistance profiles of WHO critical priority list bacterial strains. BMC Microbiol 19:1–16. https://doi.org/10.1186/s12866-019-1687-0

    Article  CAS  Google Scholar 

  52. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clini Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  Google Scholar 

  53. Rossi M, Olkkola S, Roasto M, Kivistö R, Hänninen ML (2015) Antimicrobial resistance and Campylobacter jejuni and C. coli. Antimicrobial Resistance and Food Safety 55–75. https://doi.org/10.1016/B978-0-12-801214-7.00004-1

  54. Mendes FR, Leite PRSC, Ferreira LL, Lacerda MJR, Andrade MA (2013) Utilização de antimicrobianos na avicultura. Rev Eletrôn Nutr 10:2352–2389

    Google Scholar 

  55. Luangtongkum T, Morishita TY, Ison AJ, Huang S, Mcdermott PF, Zhang Q (2006) Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campylobacter spp. in poultry. Appl Environ Microbiol 72:3600–3607. https://doi.org/10.1128/AEM.72.5.3600-3607.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Much P, Sun H, Lassnig H, KoeberL-Jelovcan S, Schliessnig H, Stueger HP (2019) Differences in antimicrobial resistance of commensal Escherichia coli isolated from caecal contents of organically and conventionally raised broilers in Austria, 2010–2014 and 2016. Prev Vet Med 171:104755. https://doi.org/10.1016/j.prevetmed.2019.104755

    Article  PubMed  Google Scholar 

  57. BRASIL (2009) Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 64, de 18 de dezembro de 2008, Diário Oficial da República Federativa do Brasil

  58. Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666. https://doi.org/10.1111/j.1462-2920.2006.01185.x

    Article  CAS  PubMed  Google Scholar 

  59. OIE (2020) World Organization for Animal Health. One Health. https://www.oie.int/en/forthe-media/onehealth/. Accessed 28 January 2021

  60. Loureiro RJ, Roque F, Rodrigues AT, Herdeiro MT, Ramalheira E (2016) O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Rev Port saúde pública 34:77–84. https://doi.org/10.1016/j.rpsp.2015.11.003

    Article  Google Scholar 

  61. OIE (2016) World Organization for Animal Health. The OIE Strategy on Antimicrobial Resistance and the Prudent Use of Antimicrobials. https://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/PortailA MR/EN_OIE-AMRstrategy.pdf. Accessed 28 January 2021

  62. WHO (2015) Word Health Organization. Global Action Plan on Antimicrobial Resistance. https://www.wh o.int/antimicrobial-resistance/publications/global-action-plan/en/. Accessed 5 February 2021

Download references

Acknowledgements

We thank Researchers Marco Antônio de Almeida Leal and Ednaldo da Silva Araújo from EMBRAPA Agrobiology for providing the infrastructure and support in the composting experiment.

Funding

The following research funding agencies provided financial support: CNPq (National Council for Scientific and Technological Development), CAPES (Coordination for the Improvement of Higher Education Personnel), and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception and design of the study. Material preparation, data collection, and analyses were performed by Júlia Ferreira Xavier, Juliana Ferreira Nunes, and Isabela Pinto Fonseca. The first draft of the manuscript was written by Paula Fernanda Alves Ferreira and Irene da Silva Coelho, and all the authors commented on the previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Irene da Silva Coelho.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Aleksander Westphal Muniz

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, P.F.A., Xavier, J.F., Nunes, J.F. et al. Bacteria and antimicrobial resistance profile during the composting process of wastes from animal production. Braz J Microbiol 54, 1157–1167 (2023). https://doi.org/10.1007/s42770-023-00912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00912-8

Keywords

Navigation