Skip to main content
Log in

Beer production potentiality of some non-Saccharomyces yeast obtained from a traditional beer starter emao

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The recent realisation regarding the potentiality of the long-neglected non-Saccharomyces yeasts in improving the flavour profile and functionality of alcoholic beverages has pushed researchers to search for such potent strains in many sources. We studied the fungal diversity and the rice beer production capability of the fungal strains isolated from emao—a traditional rice beer starter culture of the Boro community. Fifty distinct colonies were picked from mixed-culture plates, of which ten representative morphotypes were selected for species identification, and simultaneous saccharification and beer fermentation (SSBF) assay. The representative isolates were identified as Hyphopichia burtonii (Hbur-FI38, Hbur-FI44, Hbur-FI47 & Hbur-FI68), Saccharomyces cerevisiae (Scer-FI51), Wickerhamomyces anomalus (Wano-FI52), Candida carpophila (Ccar-FI53), Mucor circinelloides (Mcir-FI60), and Saccharomycopsis malanga (Smal-FI77 and Smal-FI84). The non-Saccharomyces yeast strains Hbur-FI38, Hbur-FI44, Ccar-FI53, and Smal-FI77 showed SSBF capacity on rice substrate producing beer that contained 7–10% (v/v) ethanol. A scaled-up fermentation assay was performed to assess the strain-wise fermentation behaviour in large-scale production. The nutritional, functional, and sensory qualities of the SSBF strain fermented beer were compared to the beer produced by emao. All the strains produced beer with reduced alcohol and energy value while compared to the traditional starter emao. Beer produced by both the strains of H. burtonii stood out with higher ascorbic acid, phenol, and antioxidant property, and improved sensory profile in addition to reduced alcohol and energy value. Such SSBF strains are advantageous over the non-SSBF S. cerevisiae strains as the former can be used for direct beer production from rice substrates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nelson M (2005) The barbarian's beverage: a history of beer in ancient Europe. eBook. https://doi.org/10.4324/9780203309124

  2. Basso RF, Alcarde AR, Portugal CB (2016) Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res Int 16:112–120. https://doi.org/10.1016/j.foodres.2016.06.002

    Article  CAS  Google Scholar 

  3. Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995. https://doi.org/10.1111/j.1567-1364.2008.00427.x

    Article  CAS  PubMed  Google Scholar 

  4. Chanprasartsuk OO, Prakitchaiwattana C, Sanguandeekul R, Fleet GH (2010) Autochthonous yeasts associated with mature pineapple fruits, freshly crushed juice and their ferments; and the chemical changes during natural fermentation. Bioresour Technol 101(19):7500–7509. https://doi.org/10.1016/j.biortech.2010.04.047

    Article  CAS  PubMed  Google Scholar 

  5. de Ponzzes-Gomes CMPBS, de Melo DLFM, Santana CA, Pereira GE, Mendonca MOC, Gomes FCO, Oliveira ES, Barbosa AM, Trindade RC, Rosa CA (2014) Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley. Brazilian J Microbiol 45(2):411–416. https://doi.org/10.1590/S1517-83822014000200007

    Article  Google Scholar 

  6. Aidoo KE, Rob Nout MJ, Sarkar PK (2005) Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Res 6(1):30–39. https://doi.org/10.1111/j.1567-1364.2005.00015.x

    Article  CAS  Google Scholar 

  7. Varela C (2016) The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl Microbiol Biotechnol 100(23):9861–9874. https://doi.org/10.1007/s00253-016-7941-6

    Article  CAS  PubMed  Google Scholar 

  8. Knight SJ, Klaere S, Morrison-Whittle P, Goddard MR (2018) Fungal diversity during fermentation correlates with thiol concentration in wine. Aust J Grape and Wine Res 24(1):105–112. https://doi.org/10.1111/ajgw.12304

    Article  CAS  Google Scholar 

  9. Padilla B, Gil JV, Manzanares P (2016) Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front Microbiol 7:411. https://doi.org/10.3389/fmicb.2016.00411

    Article  PubMed  PubMed Central  Google Scholar 

  10. Erten H, Campbell I (2001) The production of low-alcohol wines by aerobic yeasts. J Inst Brew 107(4):207–215. https://doi.org/10.1002/j.2050-0416.2001.tb00092.x

    Article  CAS  Google Scholar 

  11. Steensels J, Daenen L, Malcorps P, Derdelinckx G, Verachtert H, Verstrepen KJ (2015) Brettanomyces yeasts - from spoilage organisms to valuable contributors to industrial fermentations. Int J Food Microbiol 206:24–38. https://doi.org/10.1016/j.ijfoodmicro.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  12. Canonico L, Agarbati A, Comitini F, Ciani M (2016) Torulaspora delbrueckii in the brewing process: a new approach to enhance bioflavour and to reduce ethanol content. Food Microbiol 56:45–51. https://doi.org/10.1016/j.fm.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Michel M, Kopecka J, Meier-Dornberg T, Zarnkow M, Jacob F, Hutzler M (2016) Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast 33:129–144. https://doi.org/10.1002/yea.3146

    Article  CAS  PubMed  Google Scholar 

  14. Hodgson BH (1847) Kocch, Bodo and Dhimal Tribes. J. Thomas, Baptist Mission Press, Calcutta

    Google Scholar 

  15. Endle RS (1864) The Kacharis. MacMillan and Co., Ltd., St. Martin’s Street, London

    Google Scholar 

  16. Basumatary M, Gogoi M (2014) A traditional alcoholic beverage Jou: Prepared by Bodo community of Assam. India Int J Multidiscip Res Dev 1(7):307–313

    Google Scholar 

  17. Ciani M, Beco L, Comitini F (2006) Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. Int J Food Microbiol 108:239–245. https://doi.org/10.1016/j.ijfoodmicro.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  18. Kurtzman CP, Fell JW (1998) The yeasts, a taxonomic study 4th edition. Elsevier, Amsterdam, the Netherlands

  19. Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res. https://doi.org/10.1093/nar/20.9.2380

    Article  PubMed  PubMed Central  Google Scholar 

  20. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  21. Rana TS, Narzary D, Ohri D (2012) Molecular differentiation of Chenopodium album complex and some related species using ISSR profiles and ITS sequences. Gene 495(1):29–35. https://doi.org/10.1016/j.gene.2011.12.031

    Article  CAS  PubMed  Google Scholar 

  22. Aneja KR (2003) Experiments in microbiology, plant pathology and biotechnology (pp. 145–156). New Delhi: New Age International (P) Limited Publishers

  23. Pai TV, Sawant SY, Ghatak AA, Chaturvedi PA, Gupte AM, Desai NS (2015) Characterization of Indian beers: chemical composition and antioxidant potential. J Food Sci Technol. https://doi.org/10.1007/s13197-013-1152-2

    Article  PubMed  Google Scholar 

  24. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  25. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193(1):265–275. https://doi.org/10.1016/0304-3894(92)87011-4

    Article  CAS  PubMed  Google Scholar 

  27. Lee YP, Takahashi T (1966) An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem 14(1):71–77. https://doi.org/10.1016/0003-2697(66)90057-1

    Article  CAS  Google Scholar 

  28. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enzymol 299:152–178. https://doi.org/10.1016/S00766879(99)99017-1

    Article  CAS  Google Scholar 

  29. Costa ASG, Nunes MA, Almeida IMC, Carvalho MR, Barroso MF, Alves RC, Oliveira MBPP (2012) Teas, dietary supplements and fruit juices: a comparative study regarding antioxidant activity and bioactive compounds. LWT - Food Sci Technol 49:324–328. https://doi.org/10.1016/j.lwt.2012.02.030

    Article  CAS  Google Scholar 

  30. Olsovska J, Sterba K, Pavlovic M, Cejka P (2015) Determination of the energy value of beer. J Am Soc Brew Chem 73(2):165–169. https://doi.org/10.1094/ASBCJ-2015-0322-01

    Article  CAS  Google Scholar 

  31. Chen CH, Wu MC, Hou CY, Jiang CM, Huang CM, Wang YT (2009) Effect of phenolic acid on antioxidant activity of wine and inhibition of pectin methyl esterase. J Inst Brew 115(4):328–333. https://doi.org/10.1002/j.2050-0416.2009.tb00388.x

    Article  CAS  Google Scholar 

  32. Oyaizu M (1986) Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44(6):307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  CAS  Google Scholar 

  33. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341. https://doi.org/10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed D, Khan M, Saeed R (2015) Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves. Antioxidants 4(2):394–409. https://doi.org/10.3390/antiox4020394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tamang JP, Fleet GH (2009) Yeasts diversity in fermented foods and beverages. In Yeast Biotechnology: Diversity and Applications. https://doi.org/10.1007/978-1-4020-8292-4_9

  36. Shrestha H, Nand K, Rati ER (2002) Microbiological profile of murcha starters and physico-chemical characteristics of poko, a rice based traditional fermented food product of Nepal. Food Biotechnol 16(1):1–15. https://doi.org/10.1081/FBT-120004198

    Article  CAS  Google Scholar 

  37. Limtong S, Sintara S, Suwannarit P, Lotong N (2002) Yeast diversity in Thai traditional alcoholic starter. Kasetsart J (Nat Sci) 36:149–158

    Google Scholar 

  38. Kozaki M, Uchimura T (1990) Microorganisms in Chinese starter “bubod” and rice wine “tapuy” in the Philippines microorganisms in Chinese starters from Asia (part 1). J Brew Soc Japan 85(11):818–824. https://doi.org/10.6013/jbrewsocjapan1988.85.818

    Article  Google Scholar 

  39. Cronk TC, Steinkraus KH, Hackler LR, Mattick LR (1977) Indonesian tape ketan fermentation. Appl Environ Microbiol. https://doi.org/10.1128/AEM.33.5.1067-1073.1977

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rakmai J, Cheirsilp B, Srinuanpan S (2019) Designation of rice cake starters for fermented rice products with desired characteristics and fast fermentation. J Food Sci Technol 56(6):3014–3022. https://doi.org/10.1007/s13197-019-03784-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsuyoshi N, Fudou R, Yamanaka S, Kozaki M, Tamang N, Thapa S, Tamang JP (2005) Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation. Int J Food Microbiol 99:135–146. https://doi.org/10.1016/j.ijfoodmicro.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  42. Yamada R, Yamakawa SI, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases. Enzyme Microb Technol 48:393–396. https://doi.org/10.1016/j.enzmictec.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  43. Steensels J, Verstrepen KJ (2014) Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations. Annu Rev Microbiol 68:61–80. https://doi.org/10.1146/annurev-micro-091213-113025

    Article  CAS  PubMed  Google Scholar 

  44. Dwidjoseputro D, Wolf FT (1970) Microbiological studies of Indonesian fermented foodstuffs. Mycopathol Mycol Appl 41:211–222. https://doi.org/10.1007/BF02051099

    Article  CAS  PubMed  Google Scholar 

  45. Tamang JP, Sarkar PK (1995) Microflora of murcha: an amylolytic fermentation starter. Microbios 81(327):115–122

    CAS  PubMed  Google Scholar 

  46. Padilla B, Gil JV, Manzanares P (2018) Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation 4:68. https://doi.org/10.3390/fermentation4030068

    Article  CAS  Google Scholar 

  47. Sabel A, Martens S, Petri A, Konig H, Claus H (2014) Wickerhamomyces anomalus AS1: a new strain with potential to improve wine aroma. Ann Microbiol. https://doi.org/10.1007/s13213-013-0678-x

    Article  Google Scholar 

  48. Fletcher E, Feizi A, Kim SS, Siewers V, Nielsen J (2015) RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH. Microb Cell Fact. https://doi.org/10.1186/s12934-015-0331-4

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wei H, Wang W, Yarbrough JM, Baker JO, Laurens L, van Wychen S, Chen X, Taylor LE, Xu Q, Himmel ME, Zhang M (2013) Genomic, proteomic, and biochemical analyses of Oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production. PLoS One 8(9). https://doi.org/10.1371/journal.pone.0071068

  50. Takano M, Hoshino K (2018) Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. Bioresour Bioprocess 5:16. https://doi.org/10.1186/s40643-018-0203-y

    Article  Google Scholar 

  51. Inagaki S, Kato T, Mori S, Fujita T (2013) Composition and antioxidant activity of rice fermented with saccharifying organisms from Asian countries. Food Sci Technol Res 19(5):893–899

    Article  Google Scholar 

  52. Ferreira IM, Guido LF (2018) Impact of wort amino acids on beer flavour: a review. Fermentation 4:23. https://doi.org/10.3390/fermentation4020023

    Article  CAS  Google Scholar 

  53. Ghosh S, Rahaman L, Kaipeng DL, Deb D, Nath N, Tribedi P, Sharma BK (2016) Community-wise evaluation of rice beer prepared by some ethnic tribes of Tripura. J Ethn Foods. https://doi.org/10.1016/j.jef.2016.12.001

    Article  Google Scholar 

  54. Menz G, Aldred P, Vriesekoop F (2011) Growth and survival of foodborne pathogens in beer. J Food Prot. https://doi.org/10.4315/0362-028X.JFP-10-546

    Article  PubMed  Google Scholar 

  55. Deka AK, Handique P, Deka DC (2018) Antioxidant-activity and physicochemical indices of the rice beer used by the Bodo community in north-east India. J Am Soc Brew Chem. https://doi.org/10.1080/03610470.2018.1424400

    Article  Google Scholar 

  56. Suzuki K, Asano S, Iijima K, Kitamoto K (2008) Sake and beer spoilage lactic acid bacteria - a review. J Inst Brew 114(3):209–223. https://doi.org/10.1002/j.2050-0416.2008.tb00331.x

    Article  CAS  Google Scholar 

  57. Sanchez PC, Juliano BO, Laude VT, Perez CM (1988) Nonwaxy rice for Tapuy (Rice wine) production. Cereal Chem 65(3):240–243

    Google Scholar 

  58. Liu D, Zhang HT, Xiong W, Hu J, Xu B, Lin CC, Xu L, Jiang L (2014) Effect of temperature on Chinese rice wine brewing with high concentration presteamed whole sticky rice. BioMed Res Int. https://doi.org/10.1155/2014/426929

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R (2016) Nonconventional yeast species for lowering ethanol content of wines. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00642

  60. Zhu X, Navarro Y, Mas A, Torija MJ, Beltran G (2020) A rapid method for selecting non-saccharomyces strains with a low ethanol yield. Microorganisms. https://doi.org/10.3390/microorganisms8050658

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mendoza LM, De Nadra MCM, Farias ME (2007) Kinetics and metabolic behavior of a composite culture of Kloeckera apiculata and Saccharomyces cerevisiae wine related strains. Biotechnol Lett 29:1057–1063. https://doi.org/10.1007/s10529-007-9355-0

    Article  CAS  PubMed  Google Scholar 

  62. Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C (2014) Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol. https://doi.org/10.1128/AEM.03780-13

    Article  PubMed  PubMed Central  Google Scholar 

  63. Quiros M, Rojas V, Gonzalez R, Morales P (2014) Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int J Food Microbiol 181:85–91. https://doi.org/10.1016/j.ijfoodmicro.2014.04.024

    Article  CAS  PubMed  Google Scholar 

  64. Guiraud A, De Lorgeril M, Boucher F, Berthonneche C, Rakotovao A, De Leiris J (2004) Cardioprotective effect of chronic low dose ethanol drinking: insights into the concept of ethanol preconditioning. J Mol Cell Cardiol 36:561–566. https://doi.org/10.1016/j.yjmcc.2004.02.003

    Article  CAS  PubMed  Google Scholar 

  65. Yu Y, Jia XJ, Zhang WP, Fang TT, Hu J, Ma SF, Gao Q (2016) The protective effect of low-dose ethanol on myocardial fibrosis through downregulating the JNK signaling pathway in diabetic rats. J Diabetes Res. https://doi.org/10.1155/2016/3834283

    Article  PubMed  PubMed Central  Google Scholar 

  66. McCarter KD, Li C, Jiang Z, Lu W, Smith HC, Xu G, Mayhan WG, Sun H (2017) Effect of low-dose alcohol consumption on inflammation following transient focal cerebral ischemia in rats. Sci Rep. https://doi.org/10.1038/s41598-017-12720-w

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mangang KCS, Das AJ, Deka SC (2017) Comparative shelf-life study of two different rice beers prepared using wild-type and established microbial starters. J Inst Brew 123(4):579–586. https://doi.org/10.1002/jib.446

    Article  CAS  Google Scholar 

  68. Meiser J, Vazquez A (2020) Oxygen dependent mitochondrial formate production and the reverse Pasteur effect. bioRxiv. https://doi.org/10.1101/2020.04.10.035675

  69. Hagman A, Sall T, Compagno C, Piskur J (2013) Yeast ‘“make-accumulate-consume”’ life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS ONE 8(7):e68734. https://doi.org/10.1371/journal.pone.0068734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pfeiffer T, Morley A (2014) An evolutionary perspective on the Crabtree effect. Front Mol Biosci 1:17. https://doi.org/10.3389/fmolb.2014.00017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lubbehusen TL, Nielsen J, Mclntyre M (2004) Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth. Appl Microbiol Biotehnol 63:543–548. https://doi.org/10.1007/s00253-003-1394-4

    Article  CAS  Google Scholar 

  72. Rangel-Porras RA, Diaz-Perez SP et al (2019) Alcohol dehydrogenase 1 participates in the Crabtree effect and connects fermentative and oxidative metabolism in the Zygomycete Mucor circinelloides. J Microbiol 57(7):606–617. https://doi.org/10.1007/s12275-019-8680-z

    Article  CAS  PubMed  Google Scholar 

  73. Duodo KG, Dowell FE (2018) Sorghum and millets: quality management system. In Sorghum and Millets: Second edition. https://doi.org/10.1016/b978-0-12-811527-5.00014-9

  74. Shopska V, Denkova R, Lyubenova V, Kostov G (2019) Kinetic characteristics of alcohol fermentation in brewing: state of art and control of the fermentation process. In Fermented Beverages: Volume 5. The Science of Beverages. https://doi.org/10.1016/B978-0-12-815271-3.00013-0

  75. Hill AE, Stewart GG (2019) Free Amino Nitrogen in Brewing. Fermentation 5:22. https://doi.org/10.3390/fermentation5010022

  76. Stewart GG, Russell I, Anstruther A (2017) Handbook of Brewing. CRC Press, Boca Raton, pp 591–602

    Book  Google Scholar 

  77. Walker G, Stewart G (2016) Saccharomyces cerevisiae in the production of fermented beverages. Beverages. https://doi.org/10.3390/beverages2040030

    Article  Google Scholar 

  78. Bajomo MF, Young TW (1994) Fermentation of worts made from 100% raw sorghum and enzymes. J Inst Brew 100:79–84. https://doi.org/10.1002/j.2050-0416.1994.tb00810.x

    Article  CAS  Google Scholar 

  79. Moirangthem K, Jenkins D, Ramakrishna P, Rajkumari R, Cook D (2019) Indian black rice: a brewing raw material with novel functionality. J Inst Brew. https://doi.org/10.1002/jib.584

    Article  Google Scholar 

  80. Schulz BL, Phung TK, Bruschi M, Janusz A, Stewart J, Mehan J, Healy P, Nouwens AS, Fox GP, Vickers CE (2018) Process proteomics of beer reveals a dynamic proteome with extensive modifications. J Proteome Res. https://doi.org/10.1021/acs.jproteome.7b00907

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pliansrithong P, Usansa U, Wanapu C, Cultivars AR (2013) Increasing of nitrogenous substances in wort by using commercial enzymes and modifying mashing method. Int J Biosci Biochemi Bioinform. https://doi.org/10.7763/IJBBB.2013.V3.243

    Article  Google Scholar 

  82. Cortacero-Ramirez S, Hernainz-Bermudez De Castro M, Segura-Carretero A, Cruces-Blanco C, Fernandez-Gutierrez A (2003). Analysis of beer components by capillary electrophoretic methods. Trends Analyt Chem 22:440–445.https://doi.org/10.1016/S0165-9936(03)00704-0

  83. Fontana M, Buiatti S (2009) Amino acids in beer. In: Preedy VR (ed) Health and Disease Prevention. Elsevier Academic Press, London, pp 273–284

    Chapter  Google Scholar 

  84. Martinez A, Vegara S, Marti N, Valero M, Saura D (2017) Physicochemical characterization of special persimmon fruit beers using bohemian pilsner malt as a base. J Inst Brew. https://doi.org/10.1002/jib.434

    Article  Google Scholar 

  85. Yeo HQ, Liu SQ (2014) An overview of selected specialty beers: developments, challenges and prospects. Int J Food Sci Technol 49:1607–1618. https://doi.org/10.1111/ijfs.12488

    Article  CAS  Google Scholar 

  86. Tamang JP, Dewan S, Tamang B, Rai A, Schillinger U, Holzapfel WH (2007) Lactic acid bacteria in Hamei and Marcha of North East India. Indian J Microbiol 47:119–125. https://doi.org/10.1007/s12088-007-0024-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li R, Yang S, Lin M, Guo S, Han X, Ren M, Du L, Song Y, You Y, Zhan J, Huang W (2022) The biogeography of fungal communities across different chinese wine-producing regions associated with environmental factors and spontaneous fermentation performance. Front Microbiol 12:636639. https://doi.org/10.3389/fmicb.2021.636639

    Article  PubMed  PubMed Central  Google Scholar 

  88. Houtsma PC, de Wit JC, Rombouts FM (1993) Minimum inhibitory concentration (MIC) of sodium lactate for pathogens and spoilage organisms occurring in meat products. Int J Food Microbiol 20:247–257. https://doi.org/10.1016/0168-1605(93)90169-H

    Article  CAS  PubMed  Google Scholar 

  89. Shelef LA (1994) Antimicrobial effects of lactates: a review. J Food Prot 57(5):445–450. https://doi.org/10.4315/0362-028X-57.5.445

    Article  CAS  PubMed  Google Scholar 

  90. Collin S, Jerkovic V, Brohan M, Callemien D (2013) Polyphenols and beer quality. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. https://doi.org/10.1007/978-3-642-22144-6_78

  91. Ambra R, Pastore G, Lucchetti S (2021) The role of bioactive phenolic compounds on the impact of beer on health. Molecules 26:486. https://doi.org/10.3390/molecules26020486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oliveira Neto JR, de Oliveira TS, Ghedini PC, Vaz BG, Gil ES (2017) Antioxidant and vasodilatory activity of commercial beers. J Funct Foods 34:130–138. https://doi.org/10.1016/j.jff.2017.04.019

    Article  CAS  Google Scholar 

  93. Rincon AM, BouRached LM, Padilla F (2011) Compuestos fenólicos y actividad antioxidante en cervezas venezolanas. Rev Fac Farmac. (in Spanish)

  94. Handique P, Deka AK, Deka DC (2020) Antioxidant properties and phenolic contents of traditional rice-based alcoholic beverages of Assam, India. Natl Acad Sci Lett. https://doi.org/10.1007/s40009-020-00903-5

    Article  Google Scholar 

  95. Ghiselli A, Natella F, Guidi A, Montanari L, Fantozzi P, Scaccini C (2000) Beer increases plasma antioxidant capacity in humans. J Nutr Biochem 11:76–80. https://doi.org/10.1016/S0955-2863(99)00077-7

    Article  CAS  PubMed  Google Scholar 

  96. Callemien D, Collin S (2007) Involvement of flavanoids in beer color instability during storage. J Agric Food Chem 55:9066–9073. https://doi.org/10.1021/jf0716230

    Article  CAS  PubMed  Google Scholar 

  97. Dadic M, Van Gheluwe GEA (1973) Role of polyphenols and nonvolatiles in beer quality. MBAA Tech Q 10(2):69–73. https://doi.org/10.1128/aem.33.5.1067-1073.1977

    Article  CAS  Google Scholar 

  98. Kennedy G, Burlingame B, Nguyen VN (2003) Nutritional contribution of rice and impact of biotechnology and biodiversity in rice-consuming countries. Proceedings of the 20th Session of the International Rice Commission Bangkok, Thailand, 23–26 July 2002

  99. Kabasakalis V, Siopidou D, Oshatou E (2000) Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chem 70:325–328. https://doi.org/10.1016/S0308-8146(00)00093-5

    Article  CAS  Google Scholar 

  100. Es-Safi NE, Cheynier V, Moutounet M (2003) Implication of phenolic reactions in food organoleptic Properties. J Food Compos Anal 16:535–553. https://doi.org/10.1016/S0889-1575(03)00019-X

    Article  CAS  Google Scholar 

  101. Lawless HT, Heymann H (2010) Sensory evaluation of food. Springer publication. https://doi.org/10.1007/978-1-4419-6488-5

    Article  Google Scholar 

  102. Martinez-Gomez A, Caballero I, Blanco CA (2020) Phenols and melanoidins as natural antioxidants in beer. Structure, reactivity and antioxidant activity. Biomolecules 10:400. https://doi.org/10.3390/biom10030400

    Article  CAS  PubMed Central  Google Scholar 

  103. Jiang Z, Yang B, Liu X, Zhang S, Shan J, Liu J, Wang X (2017) A novel approach for the production of a non-alcohol beer (≤0.5% abv) by a combination of limited fermentation and vacuum distillation. J Inst Brew. https://doi.org/10.1002/jib.465

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the DST, Govt. of India, for funding to conduct this research work (SB/EMEQ-443/2014) and to the Department of Botany, Gauhati University, for providing necessary facilities. DN is also thankful to the DBT, Govt. of India, for funding (BT/408/NE/U-Excel/2013) to develop laboratory infrastructures under the Unit of Excellence scheme. Authors thank Prof. Kishore Kumar Das, Dept. of Statistics, G.U., and Prof. Anjali Daimari, Dept. of English, G.U., for their valuable suggestions and comments on the manuscript. The authors are very much thankful to the people from the Bodo community who provided us the emao samples and the relevant information related to their traditional brewing.

Author information

Authors and Affiliations

Authors

Contributions

DN conceptualised the research project. NB and AB did the experimental works. RLS contributed to the biochemical analysis. DN, AB and NB did data analyses and wrote the manuscript.

Corresponding author

Correspondence to Diganta Narzary.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Rosane Freitas Schwan

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boro, N., Borah, A., Sarma, R.L. et al. Beer production potentiality of some non-Saccharomyces yeast obtained from a traditional beer starter emao. Braz J Microbiol 53, 1515–1531 (2022). https://doi.org/10.1007/s42770-022-00765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00765-7

Keywords

Navigation