Skip to main content
Log in

Biochemical characterization and biological properties of mycelium extracts from Lepista sordida GMA-05 and Trametes hirsuta GMA-01: new mushroom strains isolated in Brazil

  • Fungal and Bacterial Physiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the antioxidant activity, determine and quantify the phenolic compounds and other compounds, and evaluate the cellular cytotoxicity of mycelium extracts of two new Basidiomycete mushrooms strains isolated in Brazil and identified as Lepista sordida GMA-05 and Trametes hirsuta GMA-01. Higher amounts of proteins, free amino acids, total and reducing carbohydrates, and phenolic compounds as chlorogenic, ferulic, caffeic, and gallic acids were found in extracts of T. hirsuta and L. sordida. Protocatechuic acid was found only in aqueous extracts of L. sordida. The TLC of the extracts showed the predominance of glucose and smaller amounts of xylose. It was observed through UPLC-MS higher amounts of phenolic compounds. The aqueous extract from T. hirsuta had the most noteworthy results in the antioxidant assays, especially the ABTS test. The cytotoxic activity was evaluated using two different cell lineages and showed higher toxicity for L. sordida in macrophages J774-A1. However, in Vero cells, it was 12.6-fold less toxic when compared to T. hirsuta. Thus, both mushrooms show potential as functional foods or additives, presenting phenolic content, antioxidant activity, and low cytotoxic activity in the tested cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kanchiswamy C, Malnoy M, Maffei ME (2015) Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci 20:206–211. https://doi.org/10.1016/j.tplants.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  2. Magnusson WE, Ishikawa NK, Lima AP, Dias DV, Costa FM, Holanda ASS, Santos GGA, Freitas MA, Rodrigues DJ, Pezzini FF, Barreto MR, Baccaro FR, Emilio T, Vargas-Isla R (2016) A linha de véu: a biodiversidade brasileira desconhecida. Parcerias Estratégicas 21:45–60

    Google Scholar 

  3. Contato AG, Oliveira TB, Aranha GM, Freitas EN, Vici AC, Nogueira KMV, Lucas RC, Scarcella ASA, Buckeridge MS, Silva RN, Polizeli MLTM (2021) Prospection of fungal lignocellulolytic enzymes produced from jatobá (Hymenaea courbaril) and tamarind (Tamarindus indica) seeds: scaling for bioreactor and saccharification profile of sugarcane bagasse. Microorganisms 9:533. https://doi.org/10.3390/microorganisms9030533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saccaro N Jr (2011) Desafios da Bioprospecção no Brasil. Instituto de Pesquisa Econômica Aplicada (IPEA). Texto para discussão 1569

  5. Lin S, Wang P, Lam KL, Hu J, Cheung PCK (2020) Research on a specialty mushroom (Pleurotus tuber-regium) as a functional food: chemical composition and biological activities. J Agric Food Chem 68:9277–9286. https://doi.org/10.1021/acs.jafc.0c03502

    Article  CAS  PubMed  Google Scholar 

  6. Contato AG, Inácio FD, Araújo CAV, Brugnari T, Maciel GM, Haminiuk CWI, Bracht A, Peralta RM, Souza CGM (2020) Comparison between the aqueous extracts of mycelium and basidioma of the edible mushroom Pleurotus pulmonarius: chemical composition and antioxidant analysis. J Food Meas Charact 14:830–837. https://doi.org/10.1007/s11694-019-00331-0

    Article  Google Scholar 

  7. Corrêa RCG, Brugnari T, Bracht A, Peralta RM, Ferreira ICFR (2016) Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with chemical composition: a review on the past decade findings. Trends Food Sci Technol 50:103–117. https://doi.org/10.1016/j.tifs.2016.01.012

    Article  CAS  Google Scholar 

  8. Du X, Sissons J, Shanks M, Plotto A (2021) Aroma and flavor profile of raw and roasted Agaricus bisporus mushrooms using a panel trained with aroma chemicals. LWT 138:110596. https://doi.org/10.1016/j.lwt.2020.110596

    Article  CAS  Google Scholar 

  9. Zhong W, Liu N, Xie Y, Zhao Y, Song X, Zhong W (2013) Antioxidant and anti-aging activities of mycelial polysaccharides from Lepista sordida. Int J Biol Macromol 60:355–359. https://doi.org/10.1016/j.ijbiomac.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  10. Thongbai B, Wittstein K, Richter C, Miller SL, Hyde KD, Thongklang N, Klomklung N, Chukeatirote E, Stadler M (2017) Successful cultivation of a valuable wild strain of Lepista sordida from Thailand. Mycol Prog 16:311–323. https://doi.org/10.1007/s11557-016-1262-0

    Article  Google Scholar 

  11. Saritha M, Arora A, Nain L (2012) Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour Technol 104:459–465. https://doi.org/10.1016/j.biortech.2011.10.043

    Article  CAS  PubMed  Google Scholar 

  12. Araújo CAV, Contato AG, Aranha GM, Maciel GM, Haminiuk CWI, Inácio FD, Rodrigues JHS, Peralta RM, Souza CGM (2020) Biodiscoloration, detoxification and biosorption of Reactive Blue 268 by Trametes sp. M3: a strategy for the treatment of textile effluents. Water Air Soil Pollut 231:349. https://doi.org/10.1007/s11270-020-04723-7

    Article  CAS  Google Scholar 

  13. Knežević A, Stajić M, Sofrenić I, Stanojković T, Milovanović I, Tešević V, Vukojević J (2018) Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS One 13:e0203064. https://doi.org/10.1371/journal.pone.0203064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henriques OK (2003) Characterization of the natural vegetation in Ribeirão Preto, SP: bases for conservation. 208 p. Tese de doutorado - Universidade de São Paulo (USP)

  15. Contato AG, Aranha GM, Abreu Filho BA, Peralta RM, Souza CGM (2021) Evaluation of the antioxidant and antimicrobial activity of the aqueous mycelium extract of the culinary-medicinal mushroom Lentinula boryana (Agarycomycetes) from Brazil. Int J Med Mushrooms 23:1–7. https://doi.org/10.1615/IntJMedMushrooms.2021039966

    Article  PubMed  Google Scholar 

  16. Contato AG, Brugnari T, Sibin APA, Buzzo AJR, Sá-Nakanishi AB, Bracht L, Bersani-Amado CA, Peralta RM, Souza CGM (2020) Biochemical properties and effects on mitochondrial respiration of aqueous extracts of Basidiomycete mushrooms. Cell Biochem Biophys 78:111–119. https://doi.org/10.1007/s12013-020-00901-w

    Article  CAS  PubMed  Google Scholar 

  17. Vogel HJ (1956) A convenient growth medium for Neurospora crassa. Microb Gen Bull 13:42–57

    Google Scholar 

  18. Gambato G, Todescato K, Pavão EM, Scortegagna A, Fontana RC, Salvador M, Camassola M (2016) Evaluation of productivity and antioxidant profile of solid-state cultivated macrofungi Pleurotus albidus and Pycnoporus sanguineus. Bioresour Technol 207:46–51. https://doi.org/10.1016/j.biortech.2016.01.121

    Article  CAS  PubMed  Google Scholar 

  19. White TJ (1990) PCR Protocols: a guide to method and applications. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) Amplification and direct sequencing of fungal ribosomal rRNA genes for phylogenetics. Academic Press, San Diego, pp 315–352

    Google Scholar 

  20. Glass NL, Donaldson CG (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  CAS  Google Scholar 

  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 91/95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  24. Yemm EW, Cocking EC, Ricketts RE (1955) The determination of amino-acids with ninhydrin. Analyst 80:209–214. https://doi.org/10.1039/AN9558000209

    Article  CAS  Google Scholar 

  25. Miller GL (1954) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  26. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Nature 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  27. Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514. https://doi.org/10.1042/bj0570508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pasin TM, Benassi VM, Heinen PR, Damasio ARL, Cereia M, Jorge JA, Polizeli MLTM (2017) Purification and functional properties of a novel glucoamylase activated by manganese and lead produced by Aspergillus japonicus. Int J Biol Macromol 102:779–788. https://doi.org/10.1016/j.ijbiomac.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  29. Corrêa RCG, Souza AHP, Calhelha RC, Barros L, Glamoclija J, Sokovic M, Peralta RM, Bracht A, Ferreira IC (2015) Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food Funct 6:2155–2164. https://doi.org/10.1039/c5fo00465a

    Article  PubMed  Google Scholar 

  30. Brugnari T, Silva PHA, Contato AG, Inácio FD, Nolli MM, Kato CG, Peralta RM, Souza CGM (2018) Effects of cooking and in vitro digestion on antioxidant properties and cytotoxicity of the culinary-medicinal mushroom Pleurotus ostreatoroseus (Agaricomycetes). Int J Med Mushrooms 20:259–270. https://doi.org/10.1615/IntJMedMushrooms.2018025815

    Article  PubMed  Google Scholar 

  31. Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  32. Saitou N, Nei M (1987) The neighborjoining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  33. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  34. Chutipongtanate S, Watcharatanyatip K, Homvises T, Jaturongkakul K, Thongboonkerd V (2012) Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta 98:123–129. https://doi.org/10.1016/j.talanta.2012.06.058

    Article  CAS  PubMed  Google Scholar 

  35. Mikkelsen SR, Cortón E (2016) Bioanalytical Chemistry. Wiley, Hoboken, Nova Jersey, USA

  36. Alam MN, Bristi NJ, Rafiquzamann M (2013) Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 21:143–152. https://doi.org/10.1016/j.jsps.2012.05.002

    Article  PubMed  Google Scholar 

  37. Jhan MH, Yeh CH, Tsai CC, Kao CT, Chang CK, Hsieh CW (2016) Enhancing the antioxidant ability of Trametes versicolor polysaccharopeptides by an enzymatic hydrolysis process. Molecules 21:1215. https://doi.org/10.3390/molecules21091215

    Article  CAS  PubMed Central  Google Scholar 

  38. Smith H, Doyle S, Murphy R (2015) Filamentous fungi as a source of natural antioxidants. Food Chem 185:389–397. https://doi.org/10.1016/j.foodchem.2015.03.134

    Article  CAS  PubMed  Google Scholar 

  39. Barros L, Dueñas M, Ferreira ICFR, Baptista P, Santos-Buelga C (2009) Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem Toxicol 47:1076–1079. https://doi.org/10.1016/j.fct.2009.01.039

    Article  CAS  PubMed  Google Scholar 

  40. Zengin G, Karanfil A, Uren MC, Kocak MS, Sarikurkcu C, Gungor H, Picot CMN, Mahomoodally MF (2016) Phenolic content, antioxidant and enzyme inhibitory capacity of two Trametes species. RSC Adv 6:73351–73357. https://doi.org/10.1039/C6RA09991B

    Article  CAS  Google Scholar 

  41. Oliveira DM, Bastos DLM (2011) Biodisponibilidade de ácidos fenólicos. Quím. Nova, 34:1051-1056. https://doi.org/10.1590/S0100-40422011000600023

  42. Lam J, Herant M, Dembo M, Heinrich V (2009) Baseline mechanical characterization of J774 macrophages. Biophys J 96:248–254. https://doi.org/10.1529/biophysj.108.139154

    Article  CAS  PubMed  Google Scholar 

  43. Ammerman NC, Beler-Sexton M, Azad AF (2009) Growth and maintenance of Vero cell lines. Curr Protoc Microbiol appendix 4: appendix 4E. https://doi.org/10.1002/9780471729259.mca04es11

  44. Samchai S, Seephonkal P, Sangdee A, Puntumchai A, Klinhom U (2009) Antioxidant, cytotoxic and antimalarial activities from crude extracts of mushroom Phellinus linteus. J Biol Sci 9:778–783. https://doi.org/10.3923/jbs.2009.778.783

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the doctorate grant awarded to A.G. Contato (Process nº 2017/25862-6); for the postdoctoral grant awarded to T.B. Oliveira (Process nº 2017/9000-4); and the financial support from National Institute of Science and Technology of Bioethanol (Process FAPESP 2014/50884-5) and research assistance in partnership with the Fundação para a Ciência e a Tecnologia (FCT) (Process FAPESP 2018/07522-6) and Conselho Nacional de Desenvolvimento Científico (CNPq), process 574002/2008-1 and 465319/2014-9. M.L.T.M. Polizeli (process 301963/2017-7), R.M. Peralta, L.A. Moraes, and C.V. Nakamura are Research Fellows of CNPq. G.M. Aranha and G.G. Ortolan had an undergraduate research grant awarded by CNPq, and J.S Salgado had a postdoctoral grant awarded. K.M. Retamiro and E.J. Crevelin are recipients of grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes Teixeira de Moraes Polizeli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Melissa Fontes Landell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranha, G.M., Contato, A.G., Salgado, J.C.d. et al. Biochemical characterization and biological properties of mycelium extracts from Lepista sordida GMA-05 and Trametes hirsuta GMA-01: new mushroom strains isolated in Brazil. Braz J Microbiol 53, 349–358 (2022). https://doi.org/10.1007/s42770-021-00670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00670-5

Keywords

Navigation