Skip to main content
Log in

Antibiofilm activity of Cutibacterium acnes cell-free conditioned media against Staphylococcus spp.

  • Human Microbiome - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus spp. and Cutibacterium acnes are members of the skin microbiome but can also act as pathogens. Particularly, Staphylococcus species are known to cause medical devices-associated infections, and biofilm production is one of their main virulence factors. Biofilms allow bacteria to adhere and persist on surfaces, protecting them from antimicrobials and host defenses. Since both bacteria are found in the human skin, potentially competing for niches, we aimed to investigate if C. acnes produces molecules that affect Staphylococcus spp. biofilm formation and dispersal. Thus, we evaluated the impact of C. acnes cell-free conditioned media (CFCM) on S. aureus, S. epidermidis, S. hominis, and S. lugdunensis biofilm formation. S. lugdunensis and S. hominis biofilm formation was significantly reduced with C. acnes CFCM without impact on their planktonic growth. C. acnes CFCM also significantly disrupted S. hominis established biofilms. The active molecules against S. lugdunensis and S. hominis biofilms appeared to be distinct since initial characterization points to different sizes and sensitivity to sodium metaperiodate, although the activity is highly resistant to heat in both cases. Mass spectrometry analysis of the fractions active against S. hominis revealed several potential candidates. Investigating how species present in the same environment interact, affecting the dynamics of biofilm formation, may reveal clinically useful compounds as well as molecular aspects of interspecies interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Otto, M. (2008). Staphylococcal biofilms. In: Romeo, T. (ed.) Bacterial biofilms (current topics in microbiology and immunology). Springer-Verlag, 207–228

  2. Czekaj T, Ciszewski M, Szewczyk EM (2015) Staphylococcus haemolyticus – an emerging threat in the twilight of the antibiotics age. Microbiol (United Kingdom) 161:2061–2068. https://doi.org/10.1099/mic.0.000178

    Article  CAS  Google Scholar 

  3. Kiedrowski MR, Horswill AR (2011) New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci 1241:104–121. https://doi.org/10.1111/j.1749-6632.2011.06281.x

    Article  CAS  PubMed  Google Scholar 

  4. Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB (2019) Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 5:e02192. https://doi.org/10.1016/j.heliyon.2019.e02192

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4:e01067. https://doi.org/10.1016/j.heliyon.2018.e01067

    Article  PubMed  PubMed Central  Google Scholar 

  6. Becker K, Heilmann C, Peters G (2014) Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926. https://doi.org/10.1128/CMR.00109-13

    Article  PubMed  PubMed Central  Google Scholar 

  7. Neidell MJ, Cohen B, Furuya Y, Hill J, Jeon CY, Glied S et al (2012) Costs of healthcare-and community-associated infections with antimicrobial-resistant versus antimicrobial-susceptible organisms. Clin Infect Dis 55:807–815. https://doi.org/10.1093/cid/cis552

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heilmann C, Ziebuhr W, Becker K (2019) Are coagulase-negative staphylococci virulent? Clin Microbiol Infect 25:1071–1080. https://doi.org/10.1016/j.cmi.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  9. Boisrenoult P (2018) Cutibacterium acnes prosthetic joint infection: diagnosis and treatment. Orthop Traumatol Surg Res 104:S19–S24. https://doi.org/10.1016/j.otsr.2017.05.030

    Article  CAS  PubMed  Google Scholar 

  10. Achermann Y, Goldstein EJC, Coenye T, Shirtliffa ME (2014) Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 27:419–440. https://doi.org/10.1128/CMR.00092-13

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dessinioti C, Katsambas A (2017) Propionibacterium acnes and antimicrobial resistance in acne. Clin Dermatol 35:163–167. https://doi.org/10.1016/j.clindermatol.2016.10.008

    Article  PubMed  Google Scholar 

  12. Shu M, Wang Y, Yu J, Kuo S, Coda A, Jiang Y et al (2013) Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One 8:e55380. https://doi.org/10.1371/journal.pone.0055380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allhorn M, Arve S, Brüggemann H, Lood R (2016) A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes. Sci Rep 6:1–12. https://doi.org/10.1038/srep36412

    Article  CAS  Google Scholar 

  14. Christensen GJM, Scholz CFP, Enghild J, Rohde H, Kilian M, Thürmer A et al (2016) Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics 17:1–14. https://doi.org/10.1186/s12864-016-2489-5

    Article  CAS  Google Scholar 

  15. Grice EA, Segre JA (2013) The skin microbiome. Nat Rev Microbiol 9:244–253. https://doi.org/10.1038/nrmicro2537.The

    Article  Google Scholar 

  16. Swetha TK, Pooranachithra M, Subramenium GA, Divya V, Balamurugan K, Pandian SK (2019) Umbelliferone impedes biofilm formation and virulence of methicillin-resistant Staphylococcus epidermidis via impairment of initial attachment and intercellular adhesion. Front Cell Infect Microbiol 9:357. https://doi.org/10.3389/fcimb.2019.00357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malcolmson SJ, Young TS, Ruby JG, Skewes-Cox P, Walsh CT (2013) The posttranslational modification cascade to the thiopeptide berninamycin generates linear forms and altered macrocyclic scaffolds. Proc Natl Acad Sci U S A 110:8483–8488. https://doi.org/10.1073/pnas.1307111110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Claesen J, Spagnolo JB, Ramos SF, Kurita KL, Byrd AL, Aksenov AA et al (2020) A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci Transl Med 12:eaay5445. https://doi.org/10.1126/scitranslmed.aay5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Antunes LCM, McDonald JAK, Schroeter K, Carlucci C, Ferreira RBR, Wang M et al (2014) Antivirulence activity of the human gut metabolome. MBio 5:1–13. https://doi.org/10.1128/mBio.01183-14

    Article  CAS  Google Scholar 

  20. Glatthardt T, de Mello Campos JC, Chamon RC, de Sá Coimbra TF, de Almeida Rocha G, de Melo MAF et al (2020) Small molecules produced by commensal Staphylococcus epidermidis disrupt formation of biofilms by Staphylococcus aureus. Appl Environmantal Microbiol 86:02539–19

    Google Scholar 

  21. Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H (1974) Proteinase K from Tritirachium album Limber. Eur J Biochem 47:91–97. https://doi.org/10.1111/j.1432-1033.1974.tb03671.x

    Article  CAS  PubMed  Google Scholar 

  22. Buck FF, Vithayathil AJ, Bier M, Nord FF (1962) On the mechanism of enzyme action. LXXIII. Studies on trypsins from beef, sheep and pig pancreas. Arch Biochem Biophys 97:417–424. https://doi.org/10.1016/0003-9861(62)90099-1

    Article  CAS  PubMed  Google Scholar 

  23. Kumar PG, Laloraya M, Wang CY, Ruan QG, Davoodi-Semiromi A, Kao KJ et al (2001) The autoimmune regulator (AIRE) is a dna-binding protein. J Biol Chem 276:41357–41364. https://doi.org/10.1074/jbc.M104898200

    Article  CAS  PubMed  Google Scholar 

  24. Li C, Roy K, Dandridge K, Naren AP (2004) Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane. J Biol Chem 279:24673–24684. https://doi.org/10.1074/jbc.M400688200

    Article  CAS  PubMed  Google Scholar 

  25. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179. https://doi.org/10.1016/S0167-7012(00)00122-6

    Article  PubMed  Google Scholar 

  26. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J et al (2017) The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 81:e00036–17. https://doi.org/10.1128/mmbr.00036-17

    Article  PubMed  PubMed Central  Google Scholar 

  27. Antunes LCM, Davies JE, Finlay BB (2011) Chemical signaling in the gastrointestinal tract. F1000 Biol. Rep 3:1–8. https://doi.org/10.3410/B3-4

    Article  Google Scholar 

  28. Burkholder KM, Fletcher DH, Gileau L, Kandolo A (2019) Lactic acid bacteria descrease Salmonella enterica Javiana virulence and modulate host inflammation during infection of an intestinal epithelial cell line. Pathog Dis 77(3):1–13. https://doi.org/10.1093/femspd/ftz025

    Article  CAS  Google Scholar 

  29. Oladipo AO, Oladipo OG, Bezuidenhout CC (2019) Multi-drug resistance traits of methicillin-resistant Staphylococcus aureus and other Staphylococcal species from clinical and environmental sources. J Water Health 17:930–943. https://doi.org/10.2166/wh.2019.177

    Article  PubMed  Google Scholar 

  30. Dickey SW, Cheung GYC, Otto M (2017) Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 16:457–471. https://doi.org/10.1038/nrd.2017.23

    Article  CAS  PubMed  Google Scholar 

  31. Babu E, Oropello J (2011) Staphylococcus lugdunensis: the coagulase-negative staphylococcus you don’t want to ignore. Expert Rev Anti Infect Ther 9:901–907. https://doi.org/10.1586/eri.11.110

    Article  PubMed  Google Scholar 

  32. Szczuka E, Telega K, Kaznowski A (2014) Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens. Folia Microbiol (Praha) 60:1–5. https://doi.org/10.1007/s12223-014-0332-4

    Article  CAS  Google Scholar 

  33. Otto M (2018) Staphylococcal biofilms. Microbiol Spectr 176:139–148. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  Google Scholar 

  34. Frank KL, Del Pozo JL, Patel R (2008) From clinical microbiology to infection pathogenesis: How daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev 21:111–133. https://doi.org/10.1128/CMR.00036-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schilcher K, Horswill AR (2020) Staphylococcal biofilm development: structure, regulation, and treatment strategieS. Microbiol Mol Biol Rev 84:1–36. https://doi.org/10.1128/MMBR.00026-19

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jefferson Bomfim Silva Cypriano and UniMicro at the Federal University of Rio de Janeiro (UFRJ) and Sara Teixeira de Macedo Silva and CENABIO at UFRJ for scanning electron microscopy and image processing. We also would like to thank the Centro de Espectrometria de Massas de Biomoléculas (CEMBIO) at UFRJ for mass spectrometry analyses.

Funding

This study was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento Pessoal de Nível Superior—Brasil (CAPES—Finance Code 001), as well as the Fundação Oswaldo Cruz Inova Fiocruz/VPPCB Program. This work was supported in part by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) grant # E-26/211.554/2019 (Programa Rede de Pesquisa em Saúde).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and interpretation of data: RDL, LCMA, and RBRF. Data acquisition: RDL, GAR, JSR, TG, LSC, and COGXL. Funding acquisition: LCMA and RBRF. Supervision: RBRF. Writing: RDL, TG, LCMA, and RBRF.

Corresponding author

Correspondence to Rosana Barreto Rocha Ferreira.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Jorge Luiz Mello Sampaio

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, R.D., dos Reis, G.A., da Silva Reviello, J. et al. Antibiofilm activity of Cutibacterium acnes cell-free conditioned media against Staphylococcus spp.. Braz J Microbiol 52, 2373–2383 (2021). https://doi.org/10.1007/s42770-021-00617-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00617-w

Keywords

Navigation