Skip to main content

Advertisement

Log in

Growth-promoting effects of Bradyrhizobium soybean symbionts in black oats, white oats, and ryegrass

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Although inoculating soybean with rhizobia for biological nitrogen fixation is a common practice in agriculture, rhizobia are also known to associate with grasses. In this study, we evaluate the potential utility of the rhizobial strains SEMIA 587 and 5019 (Bradyrhizobium elkanii), 5079 (Bradyrhizobium japonicum), and 5080 (Bradyrhizobium diazoefficiens), recommended for Brazilian soybean inoculation, in colonizing black oat plants and promoting growth in black and white oats, and ryegrass. Inoculation of white oats with SEMIA 587 increase the seed germination (SG) by 32.09%, whereas the SG of black oats inoculated with SEMIA 587 and 5019 increased by 40.38% and 37.85%, respectively. Similarly, inoculation of ryegrass with all strains increased SG values between 24.63 and 27.59%. In addition, white oats with SEMIA 587 and 5080 had root areas significantly superior to those in other treatments, whereas inoculation with SEMIA 5079 and 5080 resulted in the highest volume of roots. Likewise, SEMIA 5079 and 5080 significantly increased the length, volume, and area of black oats roots, whereas SEMIA 587 increased the volume, area, and dry mass of roots and shoot. Inoculation in ryegrass with SEMIA 587 significantly increased the root volume. Moreover, most strains transformed with gfp and gus were observed to colonize the roots of black oats. Collectively, the findings of this study indicate that rhizobial strains recommended for inoculation of soybean can also be used to promote the growth of the three assessed grass species, and are able to colonize the roots of black oats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hartwig I, de Carvalho FIF, de Oliveira AC, da Silva JAG, Lorencetti C, Benin G, Alano Vieira E, Bertan I, Silva GO, Valério IP, Schmidt DAM (2006) Correlações fenotípicas entre caracteres agronômicos de interesse em cruzamentos dialélicos de aveia branca. R Bras Agrociência 12:273–278. https://doi.org/10.18539/cast.v12i3.4551

    Article  Google Scholar 

  2. Barros VLNP (2013) Aveia preta - alternativa de cultivo no outono/inverno. Pesquisa & Tecnologia 10:2. http://www.aptaregional.sp.gov.br/acesse-os-artigos-pesquisa-e-tecnologia/edicao-2013/julho-dezembro-1/1401-aveia-preta-alternativa-de-cultivo-no-outono-inverno/file.html. Accessed 14 December 2020

  3. Conab – Companhia Nacional de Abastecimento (2019) Acompanhamento da safra brasileira de grãos, v.6 Safra 2018/2019. https://www.conab.gov.br/Downloads/BoletimZGraosZjaneiroZ2019.pdf. Accessed 14 Dec 2020

  4. Derpsch R, Calegari A (1992) Plantas para adubação verde de inverno. IAPAR, Londrina

    Google Scholar 

  5. Kissmann KG (1997) Plantas Infestantes e Nocivas. BASF, São Paulo

    Google Scholar 

  6. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res 65:93–106. https://doi.org/10.1016/S0378-4290(99)00080-5

    Article  Google Scholar 

  7. Alves JB (2005) Seleção de rizóbios para trevo branco. Dissertation, Universidade Federal do Rio Grande do Sul.

  8. Freire JRJ (1977) Inoculation of soybeans. In: Vincent JM, Whitney AS, Bose J (eds) Exploiting the legume-Rhizobium symbiosis in tropical agriculture. University of Hawaii, Honolulu, pp 335–379

    Google Scholar 

  9. Freire JRJ, Vernetti JDJ (1997) A pesquisa com soja, a seleção de rizóbio e a produção de inoculantes no Brasil. Pesq Agrop Gaúcha 5:117–126

    Google Scholar 

  10. Brasil (2011) SDA/MAPA Normative Instruction nº 13/2011. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda–13-de–24–03–2011-inoculantes.pdf. Accessed 14 Feb 2020

  11. Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336:129–142

    Article  CAS  Google Scholar 

  12. Stroschein MRD, Sá ELSD, Machado RG, Cabral TDL, Bruxel M, Fontoura RCD (2011) Caracterização e influência de rizóbios isolados de alfafa na germinação e desenvolvimento inicial de plântulas de arroz. Cienc Rural 41:1738–1743. https://doi.org/10.1590/S0103-84782011001000010

    Article  Google Scholar 

  13. Bhattacharjee RB, Jourand P, Chaintreuil C, Dreyfus B, Singh A, Mukhopadhyay SN (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fert Soils 48:173–182. https://doi.org/10.1007/s00374-011-0614-9

    Article  CAS  Google Scholar 

  14. Mishra RPN, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389. https://doi.org/10.1007/s00284-005-0296-3

    Article  CAS  PubMed  Google Scholar 

  15. Osorio Filho BD, Gano KA, Binz A, Lima RF, Aguilar LM, Ramirez A, Caballero-Mellado J, Sá ELS, Giongo A (2014) Rhizobia enhance growth in rice plants under flooding conditions. Am Eurasian J Agric Environ Sci 14:707–718. https://doi.org/10.5829/idosi.aejaes.2014.14.08.12377

    Article  Google Scholar 

  16. Hahn L, Sá ELS, Osório Filho BD, Machado RG, Damasceno RG, Giongo A (2016) Rhizobial inoculation, alone or coinoculated with Azospirillum brasilense promotes growth of wetland rice. Rev Bras Ciênc Solo 40:e0160006. https://doi.org/10.1590/18069657rbcs20160006

    Article  CAS  Google Scholar 

  17. Hahn L, Sá ELS, Silva WR, Machado RG, Damasceno RG (2013) Promoção de crescimento de híbridos de milho inoculados com rizóbios e bactérias diazotróficas associativas. Pesq Agrop Gaúcha 19:33–40

    Google Scholar 

  18. Santos FLD (2018) Inoculação e coinoculação de rizobactérias promotoras de crescimento em plantas de arroz, milho e trigo. Thesis, Universidade Federal do Rio Grande do Sul

  19. Silva FB, Winck B, Borges CS, Santos FL, Bataiolli RD, Backes T, Bassani VL, Borin JBM, Frazzon APG, Sá ELS (2020) Native rhizobia from southern Brazilian grassland promote the growth of grasses. Rhizosphere 16:100240. https://doi.org/10.1016/j.rhisph.2020.100240

    Article  Google Scholar 

  20. Stajkovic-Srbinovic O, Delic D, Kuzmanovic D, Protic N, Rasulic N, Knezevic-Vukcevic, (2014) Growth and nutrient uptake in oat and barley plants as affected by rhizobacteria. Rom Biotechnol Lett 19:9429–9436

    CAS  Google Scholar 

  21. Yanni YG, Dazzo FB, Squartini A, Zanardo M, Zidan MI, Abd Elgawad YE (2016) Assessment of the natural endophytic association between Rhizobium and wheat and its ability to increase wheat production in the Nile delta. Plant Soil 407:367–383. https://doi.org/10.1007/s11104-016-2895-0

    Article  CAS  Google Scholar 

  22. Bartoli C, Boivin S, Marchetti M, Gris C, Gasciolli V, Gaston M, Auriac MC, Cottret L, Carlier A, Masson-Boivin C, Lepetit M, Lefebvre B (2020) Rhizobium leguminosarum symbiovar viciae strains are natural wheat endophytes and can stimulate root development and colonization by arbuscular mycorrhizal fungi. https://hal.inrae.fr/hal-02967159. Accessed 14 Dec 2020

  23. Hahn L (2013) Promoção de crescimento de plantas gramíneas e leguminosas inoculadas com rizóbios e bactérias associativas. Thesis, Universidade Federal do Rio Grande do Sul

  24. Machado RG, de Sá ELS, Hahn L, Oldra S, Mangrich dos Passos JF, Osório Filho BD, Stroschein MRD, da Silva WR (2016) Rhizobia symbionts of legume forages native to south Brazil as promoters of cultivated grass growing. Internat J Agric Biol 18(5). https://doi.org/10.17957/IJAB/15.0201

  25. Goulart-Machado R, Saccol-de Sá EL, Hahn L, Pilatti-Sant’Ana WL (2018) Inoculation of plant growth promoting rhizobia in Sudan grass (Sorghum χ sudanense (Piper) Stapf cv. Sudanense) and millet (Pennisetum glaucum (L.) R. Br. cv. BRS1501). Acta Agron 67:133–139. https://doi.org/10.15446/acag.v67n1.55849

    Article  Google Scholar 

  26. Chen XC, Feng J, Hou BH, Li FQ, Li Q, Hong GF (2005) Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res 33:2540–2548. https://doi.org/10.1093/nar/gki537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. https://doi.org/10.1016/S0734-9750(99)00014-2

    Article  PubMed  Google Scholar 

  28. Dutta S, Mishra AK, Kumar BSD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461. https://doi.org/10.1016/j.soilbio.2007.09.009

    Article  CAS  Google Scholar 

  29. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingworth S, Orgambide G, De Bruijn F, Stolzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. In: Ladha JK, de Bruijn FJ, Malik KA (eds) Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Developments in Plant and Soil Sciences. Springer, Dordrecht, pp 99-114. https://doi.org/10.1007/978-94-011-7113-7_10

  30. Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278. https://doi.org/10.1128/AEM.71.11.7271-7278.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Domit L, Costa J, Vidor C, Pereira J (1990) Inoculation of cereal seeds with Bradyrhizobium japonicum and its effect on soybeans grown in succession. R Bras Ci Solo 14:313–319

    Google Scholar 

  32. Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plant growth promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038–2046

    Article  CAS  Google Scholar 

  33. Yanni YG, Rizk RY, Abdel-Fattah FK, Squartini A, Corich V, Giacomini A, De Bruijin D, Redemaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Ninke K, Philip-Hollingsworth S, Mateos PF, Velasquez E, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, NG PK, Dazzo FB, (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28:845–870. https://doi.org/10.1071/PP01069

    Article  CAS  Google Scholar 

  34. Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886. https://doi.org/10.2134/agronj2000.925880x

    Article  Google Scholar 

  35. Osorio Filho BD, Binz A, Lima RF, Giongo A, Sá ELS (2016) Promoção de crescimento de arroz por rizóbios em diferentes níveis de adubação nitrogenada. Cienc Rural 46:478–485. https://doi.org/10.1590/0103-8478cr20141066

    Article  CAS  Google Scholar 

  36. Barriuso J, Solano BR, Lucas JA, Lobo AP, García-Villaraco A, Mañero FJG (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). J Plant Nutr 4:1–17. https://doi.org/10.1002/9783527621989

    Article  Google Scholar 

  37. Maguire JD (1962) Speed of germination – and in selection for seedling emergence and vigor. Crop Science 2:176–177

    Article  Google Scholar 

  38. Sarruge JR (1975) Soluções nutritivas. Summna Phytopathol 1:231–233

    CAS  Google Scholar 

  39. Moraes MT (2017) Modelagem do crescimento radicular de milho e soja sujeito a estresses hídrico e mecânico em latossolo. Thesis, Universidade Federal do Rio Grande do Sul

  40. Jorge LAC, Silva DJCB (2010) Safira: Manual de utilização. Embrapa Instrumentação Agropecuária, São Carlos

    Google Scholar 

  41. Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Departamento de Solos UFRGS, Porto Alegre

    Google Scholar 

  42. Ramos HJ, Roncato-Maccari LD, Souza EM, Soares-Ramos JR, Hungria M, Pedrosa FO (2002) Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol 97:243–252. https://doi.org/10.1016/S0168-1656(02)00108-6

    Article  CAS  PubMed  Google Scholar 

  43. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  Google Scholar 

  44. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351. https://doi.org/10.1073/pnas.77.12.7347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O’hara GW, Hungria M, Woomer P, Howieson JG (2016) Counting rhizobia. In: Howieson JG, Dilworth MJ (Ed.) Working with rhizobia. Australian Centre for International Agricultural Research, Canberra, pp 109-124.

  46. Machado R (2011) Promoção de crescimento em gramíneas forrageiras por rizóbios isolados de Lotus corniculatus. Dissertation, Universidade federal do Rio Grande do Sul

  47. Machado RG, de Sá ELS, Bruxel M, Giongo A, da Silva Santos N, Nunes AS (2013) Indoleacetic acid producing rhizobia promote growth of Tanzania grass (Panicum maximum) and Pensacola grass (Paspalum saurae). Int J Agric Biol 15:827–834

    CAS  Google Scholar 

  48. Baldani VLD, Baldani JI (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Ciênc 77:549–579. https://doi.org/10.1590/S0001-37652005000300014

    Article  CAS  PubMed  Google Scholar 

  49. Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150. https://doi.org/10.1007/s00253-007-0909-9

    Article  CAS  PubMed  Google Scholar 

  50. Dartora J, Marini D, Gonçalves E, Guimarães VF (2016) Co-inoculation of Azospirillum brasilense and Herbaspirillum seropedicae in maize. Rev Bras Eng Agríc Ambient 20:545–550. https://doi.org/10.1590/1807-1929/agriambi.v20n6p545-550

    Article  Google Scholar 

  51. Kaneshiro T, Kwolek WF (1985) Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid. Plant Sci 42:141–146. https://doi.org/10.1016/0168-9452(85)90119-0

    Article  CAS  Google Scholar 

  52. Hutzinger O, Kosuge T (1968) 3-indoleacetyl-L-lysine, a new conjugate of 3-indoleacetic acid produced by Pseudomonas savastanoi. In: Wightman F, Setterfield G (Ed.) Biochemistry and physiology of plant growth substances. Ottawa, pp. 183-194

  53. Hunter WJ (1987) Influence of 5-methyltryptophan-resistant Bradyrhizobium japonicum on soybean root nodule indole-3-acetic acid content. Appl Environ Microbiol 53:1051–1055

    Article  CAS  Google Scholar 

  54. Hunter WJ (1989) Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant 76:31–36. https://doi.org/10.1111/j.1399-3054.1989.tb05448.x

    Article  CAS  Google Scholar 

  55. Torres D, Benavidez I, Donadio F, Mongiardini E, Rosas S, Spaepen S, Vanderleyden J, Pencík A, Novák O, Strnad M, Frébortová J, Cassán F (2018) New insights into auxin metabolism in Bradyrhizobium japonicum. Res Microbiol 169:313–323. https://doi.org/10.1016/j.resmic.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  56. Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. Appl Environ Microbiol 6:366–370

    Google Scholar 

  57. Gupta SK, Prasad JK, Raghuwanshi R (2017) Characterizing rhizospheric plant growth promoting bacteria for their effects on oat (Avena sativa). Int J Pharma Bio Sci 8:142–151. https://doi.org/10.22376/ijpbs.2017.8.4.b142-151

    Article  CAS  Google Scholar 

  58. Silveira AAD (2009) Análise genética e funcional de genes relacionados à captação de sideróforos em Bradyrhizobium elkanii. Dissertation, Universidade Federal do Rio Grande do Sul

  59. Bhatia R, Dogra RC, Sharma PK (2002) Construction of green fluorescent protein (GFP)-marked strains of Bradyrhizobium for ecological studies. J Appl Microbiol 93:835–839. https://doi.org/10.1046/j.1365-2672.2002.01768.x

    Article  CAS  PubMed  Google Scholar 

  60. Ledermann R, Bartsch I, Remus-Emsermann MN, Vorholt JA, Fischer HM (2015) Stable fluorescent and enzymatic tagging of Bradyrhizobium diazoefficiens to analyze host-plant infection and colonization. Mol Plant Microbe Interact 28:959–967. https://doi.org/10.1094/mpmi-03-15-0054-ta

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financed by a grant and fellowships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil).

Author information

Authors and Affiliations

Authors

Contributions

Material and methods preparation, and analysis were performed by Carolina Leal de Castilho, Camila Gazolla Volpiano, Lucas Zulpo, Adriana Ambrosini, and Anelise Beneduzi. Grant and fellowships acquisition were provided by Enílson Luiz Saccol de Sá, and Luciane Passaglia. The manuscript was written by Carolina Leal de Castilho, Enílson Luiz Saccol de Sá, and Anelise Beneduzi. All authors commented on previous versions of the manuscript, and approved the final manuscript.

Corresponding author

Correspondence to Anelise Beneduzi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luc F.M. Rouws.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castilho, C.L., Volpiano, C.G., Ambrosini, A. et al. Growth-promoting effects of Bradyrhizobium soybean symbionts in black oats, white oats, and ryegrass. Braz J Microbiol 52, 1451–1460 (2021). https://doi.org/10.1007/s42770-021-00523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00523-1

Keywords

Navigation