Skip to main content
Log in

Assessment of the in vitro activity of azithromycin niosomes alone and in combination with levofloxacin on extensively drug-resistant Klebsiella pneumoniae clinical isolates

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Background and aim

Extensively drug-resistant (XDR) Klebsiella pneumoniae represent a major threat in intensive care units. The aim of the current study was to formulate a niosomal form of azithromycin (AZM) and to evaluate its in vitro effect on XDR K. pneumoniae as a single agent or in combination with levofloxacin.

Material and methods

Forty XDR K. pneumoniae isolates (23 colistin-sensitive and 17 colistin-resistant) were included in the study. Formulation and characterization of AZM niosomes were performed. The in vitro effect of AZM solution/niosomes alone and in combination (with levofloxacin) was investigated using the checkerboard assay, confirmed with time-kill assay and post-antibiotic effect (PAE).

Results

The AZM niosome mean minimal inhibitory concentration (MIC) (187.4 ± 209.1 μg/mL) was significantly lower than that of the AZM solution (342.5 ± 343.4 μg/mL). AZM niosomes/levofloxacin revealed a 40% synergistic effect compared to 20% with AZM solution/levofloxacin. No antagonistic effect was detected. The mean MIC values of both AZM niosomes and AZM solution were lower in the colistin-resistant group than in the colistin-sensitive group. The mean PAE time of AZM niosomes (2.3 ± 1.09 h) was statistically significantly longer than that of the AZM solution (1.37 ± 0.5 h) (p = 0.023).

Conclusion

AZM niosomes were proved to be more effective than AZM solution against XDR K. pneumoniae, even colistin-resistant isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability (data transparency)

Available

References

  1. Effah CY, Sun T, Liu S, Wu Y (2020) Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob 19(1):1. https://doi.org/10.1186/s12941-019-0343-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY (2020) Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem 8:286. https://doi.org/10.3389/fchem.2020.00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patra JK, Das G, Fraceto LF, Campos E, Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  4. Ge X, Wei M, He S, Yuan WE (2019) Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 11(2):55. https://doi.org/10.3390/pharmaceutics11020055

    Article  CAS  PubMed Central  Google Scholar 

  5. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020. http://www.eucast.org."

  6. Tille P (2017) Bailey and Scott’s diagnostic microbiology. 14th. St Louis, Missouri, Mosby Elsevier

  7. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  8. Barakat HS, Kassem MA, El-Khordagui LK, Khalafallah NM (2014) Vancomycin-eluting niosomes: a new approach to the inhibition of staphylococcal biofilm on abiotic surfaces. AAPS PharmSciTech 15(5):1263–1274. https://doi.org/10.1208/s12249-014-0141-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manconi M, Sinico C, Valenti D, Lai F, Fadda AM (2006) Niosomes as carriers for tretinoin. III A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm 311(1–2):11–19. https://doi.org/10.1016/j.ijpharm.2005.11.045

    Article  CAS  PubMed  Google Scholar 

  10. Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for dilution antimicrobial susceptibility tests f or bacteria that grow aerobically; Approved Standard—Ninth Edition. CLSI document M07-A9. Wayne: Clinical and Laboratory Standards Institute

  11. Clinical and Laboratory Standards Institute (CLSI) (2020) Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute

  12. Schwalbe R, Steele-Moore L, Goodwin AC (2007) Antimicrobial susceptibility testing protocols. CRC Press, New York

    Book  Google Scholar 

  13. Moody J (2007) Synergism testing: broth microdilution checkerboard and broth macrodilution methods. In: Garcia LS, Isenberg HD (eds) Clinical microbiology procedures handbook, 2nd edition update. ASM Press, Washington, DC, pp 5.12.1–5.12.23

    Google Scholar 

  14. Aaron SD, Ferris W, Henry DA, Speert DP, Macdonald NE (2000) Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. Am J Respir Crit Care Med 161(4Pt1):1206–1212. https://doi.org/10.1164/ajrccm.161.4.9907147

    Article  CAS  PubMed  Google Scholar 

  15. Lavigne JP, Bonnet R, Michaux-Charachon S, Jourdan J, Caillon J, Sotto A (2004) Post-antibiotic and post-beta-lactamase inhibitor effects of ceftazidime plus sulbactam on extended-spectrum beta-lactamase-producing Gram-negative bacteria. J Antimicrob Chemother 53(4):616–619. https://doi.org/10.1093/jac/dkh140

    Article  CAS  PubMed  Google Scholar 

  16. Chan Y (2003) Biostatistics 102: quantitative data–parametric & non-parametric tests. Blood Press 140(24.08):79

    Google Scholar 

  17. Ma YX, Wang CY, Li YY, Li J, Wan QQ, Chen JH, Tay FR, Niu LN (2019) Considerations and caveats in combating ESKAPE pathogens against nosocomial infections. Adv Sci (Weinh) 7(1):1901872. https://doi.org/10.1002/advs.201901872

    Article  CAS  Google Scholar 

  18. Santimaleeworagun W, Thunyaharn S, Juntanawiwat P, Thongnoy N, Harindhanavudhi S, Nakeesathit S, Teschumroon S (2020) The prevalence of colistin-resistant Gram-negative bacteria isolated from hospitalized patients with bacteremia. J Appl Pharm Sci 10(02):056–059. https://doi.org/10.7324/JAPS.2020.102009

    Article  Google Scholar 

  19. Giacobbe DR, Del Bono V, Trecarichi EM, De Rosa FG, Giannella M, Bassetti M, Bartoloni A, Losito AR, Corcione S, Bartoletti M, Mantengoli E, Saffioti C, Pagani N, Tedeschi S, Spanu T, Rossolini GM, Marchese A, Ambretti S, Cauda R, Viale P, Viscoli C, Tumbarello M, ISGRI-SITA (Italian Study Group on Resistant Infections of the Società Italiana Terapia Antinfettiva) (2015) Risk factors for bloodstream infections due to colistin-resistant KPC-producing klebsiella pneumoniae: results from a multicenter case-control-control study. Clin Microbiol Infect 21(12):1106.e1–1106.e8. https://doi.org/10.1016/j.cmi.2015.08.001

    Article  CAS  Google Scholar 

  20. Ullah S, Shah MR, Shoaib M, Imran M, Shah SW, Ali I, Ahmed F (2017) Creatinine-based non-phospholipid vesicular carrier for improved oral bioavailability of azithromycin. Drug Dev Ind Pharm 43(6):1011–1022. https://doi.org/10.1080/03639045.2017.1291667

    Article  CAS  PubMed  Google Scholar 

  21. Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, Ruiz J (2017) Macrolide resistance mechanisms in Enterobacteriaceae: focus on azithromycin. Crit Rev Microbiol 43(1):1–30. https://doi.org/10.3109/1040841X.2015.1136261

    Article  CAS  PubMed  Google Scholar 

  22. Eleraky NE, Allam A, Hassan SB, Omar MM (2020) Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics 12(2):142. https://doi.org/10.3390/pharmaceutics12020142

    Article  CAS  PubMed Central  Google Scholar 

  23. Khan S, Akhtar MU, Khan S, Javed F, Khan AA (2020) Nanoniosome-encapsulated levoflaxicin as an antibacterial agent against Brucella. J Basic Microbiol 60(3):281–290. https://doi.org/10.1002/jobm.201900454

    Article  CAS  PubMed  Google Scholar 

  24. Ghafelehbashi R, Akbarzadeh I, Tavakkoli Yaraki M, Lajevardi A, Fatemizadeh M, Heidarpoor Saremi L (2019) Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int J Pharm 569:118580. https://doi.org/10.1016/j.ijpharm.2019.118580

    Article  CAS  PubMed  Google Scholar 

  25. Saini H, Chhibber S, Harjai K (2015) Azithromycin and ciprofloxacin: a possible synergistic combination against Pseudomonas aeruginosa biofilm-associated urinary tract infections. Int J Antimicrob Agents 45(4):359–367. https://doi.org/10.1016/j.ijantimicag.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  26. Saiman L, Chen Y, Gabriel PS, Knirsch C (2002) Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 46(4):1105–1107. https://doi.org/10.1128/aac.46.4.1105-1107.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kolumbić Lakos A, Skerk V, Maleković G, Dujnić Spoljarević T, Kovacic D, Pasini M, Markotić A, Magri V, Perletti G (2011) A switch therapy protocol with intravenous azithromycin and ciprofloxacin combination for severe, relapsing chronic bacterial prostatitis: a prospective non-comparative pilot study. J Chemother 23(6):350–353. https://doi.org/10.1179/joc.2011.23.6.350

    Article  PubMed  Google Scholar 

  28. Magri V, Montanari E, Škerk V, Markotić A, Marras E, Restelli A, Naber KG, Perletti G (2011) Fluoroquinolone-macrolide combination therapy for chronic bacterial prostatitis: retrospective analysis of pathogen eradication rates, inflammatory findings and sexual dysfunction. Asian J Androl 13(6):819–827. https://doi.org/10.1038/aja.2011.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumaraswamy M, Lin L, Olson J, Sun CF, Nonejuie P, Corriden R, Döhrmann S, Ali SR, Amaro D, Rohde M, Pogliano J, Sakoulas G, Nizet V (2016) Standard susceptibility testing overlooks potent azithromycin activity and cationic peptide synergy against MDR Stenotrophomonas maltophilia. J Antimicrob Chemother 71(5):1264–1269. https://doi.org/10.1093/jac/dkv487

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meerwein M, Tarnutzer A, Böni M, Van Bambeke F, Hombach M, Zinkernagel AS (2020) Increased azithromycin susceptibility of multidrug-resistant gram-negative bacteria on RPMI-1640 agar assessed by disk diffusion testing. Antibiotics (Basel) 9(5):E218. https://doi.org/10.3390/antibiotics9050218

    Article  CAS  Google Scholar 

  31. Gordon NC, Png K, Wareham DW (2010) Potent synergy and sustained bactericidal activity of a vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 54(12):5316–5322. https://doi.org/10.1128/AAC.00922-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vidaillac C, Benichou L, Duval RE (2012) In vitro synergy of colistin combinations against colistin-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob Agents Chemother 56(9):4856–4861. https://doi.org/10.1128/AAC.05996-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ulloa ER, Kousha A, Tsunemoto H, Pogliano J, Licitra C, LiPuma J, Sakoulas G, Nizet V, Kumaraswamy M (2020) Azithromycin exerts bactericidal activity and enhances innate immune mediated killing of MDR Achromobacter xylosoxidans. Infect Microb Dis 2(1):10–17. https://doi.org/10.1097/IM9.0000000000000014

    Article  CAS  Google Scholar 

  34. Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, Kumaraswamy M, Rivera H Jr, Corriden R, Rohde M, Hensler ME, Burkart MD, Pogliano J, Sakoulas G, Nizet V (2015) Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant gram-negative bacterial pathogens. EBioMedicine 2(7):690–698. https://doi.org/10.1016/j.ebiom.2015.05.021

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bremmer DN, Bauer KA, Pouch SM, Thomas K, Smith D, Goff DA, Pancholi P, Balada-Llasat JM (2016) Correlation of checkerboard synergy testing with time-kill analysis and clinical outcomes of extensively drug-resistant Acinetobacter baumannii respiratory infections. Antimicrob Agents Chemother 60(11):6892–6895. https://doi.org/10.1128/AAC.00981-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Flamm RK, Rhomberg PR, Lindley JM, Sweeney K, Ellis-Grosse EJ, Shortridge D (2019) Evaluation of the bactericidal activity of fosfomycin in combination with selected antimicrobial comparison agents tested against gram-negative bacterial strains by using time-kill curves. Antimicrob Agents Chemother 63(5):e02549–e02518. https://doi.org/10.1128/AAC.02549-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mezzatesta ML, Caio C, Gona F, Zingali T, Salerno I, Stefani S (2016) Colistin increases the cidal activity of antibiotic combinations against multidrug-resistant Klebsiella pneumoniae: an in vitro model comparing multiple combination bactericidal testing at one peak serum concentration and time-kill method. Microb Drug Resist 22(5):360–363. https://doi.org/10.1089/mdr.2015.0160

    Article  CAS  PubMed  Google Scholar 

  38. Debbia EA, Molinari G, Paglia P, Schito GC (1990) Post-antibiotic effect of azithromycin on respiratory tract pathogens. Drugs Exp Clin Res 16(12):615–619

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MMB and HAE were responsible for the idea, study design, and revision of the manuscript. HSB was responsible for the formulation and characterization of niosomes. NSA was responsible for the data collection. HAO was responsible for the laboratory work, data analysis, and drafting of the manuscript. MAM was responsible for the idea, study design, laboratory work supervision, data analysis and interpretation, and writing of the manuscript. All authors contributed to the interpretation of data and approved the final manuscript.

Corresponding author

Correspondence to Marwa Ahmed Meheissen.

Ethics declarations

Ethics approval and consent to participate

Not required

Consent for publication

The author accepts the responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the nonexclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature.

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability (software application or custom code)

Not applicable

Additional information

Responsible Editor: Luis Henrique Souza Guimaraes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owais, H.M., Baddour, M.M., El-Metwally, H.A.ER. et al. Assessment of the in vitro activity of azithromycin niosomes alone and in combination with levofloxacin on extensively drug-resistant Klebsiella pneumoniae clinical isolates. Braz J Microbiol 52, 597–606 (2021). https://doi.org/10.1007/s42770-021-00433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00433-2

Keywords

Navigation