Skip to main content
Log in

Synergistic effects of pomegranate and rosemary extracts in combination with antibiotics against antibiotic resistance and biofilm formation of Pseudomonas aeruginosa

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The combination of plant extract and antibiotic represents a template for developing of antibiofilm drugs. This study investigated the synergistic effects of pomegranate/rosemary/antibiotic combinations against antibiotic resistance and biofilm formation of Pseudomonas aeruginosa. The results showed that 17 (85%) of total P. aeruginosa isolates were biofilm producers; however, 5 (25%) isolates were demonstrated as a strong biofilm producer. The highest MIC level (1024 μg/ml) of tested antibiotics against strong biofilm producer isolates was observed with piperacillin, however the MIC ranges of ceftazidime, gentamycin, imipenem, and levofloxacin against these isolates were reached to (256–1024 μg/ml), (32–1024 μg/ml), (8–1024 μg/ml), and (8–512 μg/ml), respectively. PS-1 was the representative isolate for strong biofilm formation and high antibiotic resistance. 16S rRNA gene analysis suggested that PS-1 (accession No. MN619678) was identified as a strain of P. aeruginosa POA1. Pomegranate and rosemary extracts were the most effective extracts in biofilm inhibition, which significantly inhibited 91.93 and 90.83% of PS-1 biofilm, respectively. Notably, the synergism between both plant extracts and antibiotics has significantly reduced the MICs of used antibiotics at the level lower than the susceptibility breakpoints. Pomegranate/rosemary/antibiotic combinations achieved the highest biofilm eradication, which ranging from 90.0 to 99.6%, followed by the eradication ranges of pomegranate/rosemary combination, rosemary, and pomegranate extracts, which reached to (76.5–85.4%), (53.1–73.7%), and (41.2–71.5%), respectively. The findings suggest that pomegranate/rosemary/antibiotic combinations may be an effective therapeutic agent for antibiotic resistance and biofilm formation of P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F (2020) Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Front Microbiol 10:2894. https://doi.org/10.3389/fmicb.2019.02894

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429. https://doi.org/10.1016/J.FOODCONT.2014.05.047

    Article  CAS  Google Scholar 

  3. Karuppiah P, Mustaffa M (2013) Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection. Asian Pac J Trop Biomed 3(9):737–742. https://doi.org/10.1016/S2221-1691(13)60148-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lizana JA. Use of plant extracts to block bacterial biofilm formation. In: High School Students for Agricultural Science Research, Proceedings of the 3rd Congress PIIISA. (Olías, Raquel; Belver, Andrés; Sahrawy, Mariam; Serrato, Antonio Jesús; Cárdenas, Katiuska E.; Sandalio, Luisa M.; Rodríguez Serrano, María; Corpas, Francisco J.; Palma Martínez, José Manuel; Castro López AJ, ed.). CSIC - Estación Experimental del Zaidín (EEZ); 2013. http://digital.csic.es/handle/10261/99998. Accessed December 22, 2017

  5. Roy R, Tiwari M, Donelli G, Tiwari V. (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action., 9:522, 554 https://doi.org/10.1080/21505594.2017.1313372

  6. Cheesman MJ, Ilanko A, Blonk B, Cock IE (2017) Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev 11(22):57–72. https://doi.org/10.4103/phrev.phrev_21_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kali A, Bhuvaneshwar D, Charles PMV, Seetha KS (2016) Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. J basic Clin Pharm 7(3):93–96. https://doi.org/10.4103/0976-0105.183265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yin H, Deng Y, Wang H, Liu W, Zhuang X, Chu W (2015) Tea polyphenols as an antivirulence compound disrupt quorum-sensing regulated pathogenicity of Pseudomonas aeruginosa. Sci Rep 5(1):16158. https://doi.org/10.1038/srep16158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bassiri-Jahromi S (2018) Punica granatum (pomegranate) activity in health promotion and cancer prevention. Oncol Rev 12(1):1–7. https://doi.org/10.4081/oncol.2018.345

    Article  CAS  Google Scholar 

  10. Mastrogiovanni F, Mukhopadhya A, Lacetera N et al (2019) Anti-inflammatory effects of pomegranate peel extracts on in vitro human intestinal caco-2 cells and ex vivo porcine colonic tissue explants. Nutrients 11(3). https://doi.org/10.3390/nu11030548

  11. Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V et al (2019) Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci Rep. 9(1). https://doi.org/10.1038/s41598-018-37173-7

  12. O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. [6] Genetic approaches to study of biofilms Methods Enzymol 1999;310:91–109. doi:https://doi.org/10.1016/S0076-6879(99)10008-9

  13. Stiefel P, Rosenberg U, Schneider J, Mauerhofer S, Maniura-Weber K, Ren Q (2016) Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system. Appl Microbiol Biotechnol 100(9):4135–4145. https://doi.org/10.1007/s00253-016-7396-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alcaráz LE, Satorres SE, Lucero RM, Puig De Centorbi ON (2003) Species identification, slime production and oxacillin susceptibility in coagulase-negative staphylococci isolated from nosocomial specimens. Brazilian J Microbiol. 34:45–51 https://pdfs.semanticscholar.org/0891/b942d8ff7367be36ec92dc602797ea36c318.pdf.

    Article  Google Scholar 

  15. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement Clinical and Laboratory Standards Institute. 2011;31(15). http://vchmedical.ajums.ac.ir/_vchmedical/documents/CLSI 2011.pdf. Accessed December 22, 2017

  16. CLSI. Methods for determining bactericidal activity of antimicrobial agents; approved guideline M26-A. CLSI. 1999;19(18):7. https://clsi.org/media/1462/m26a_sample.pdf. Accessed December 22, 2017

  17. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard-Ninth Edition. CLSI document M07-A9. 2012;32(2):92

  18. Kawsud P, Puripattanavong J, Teanpaisan R (2014) Screening for anticandidal and antibiofilm activity of some herbs in Thailand. Trop J Pharm Res 13(9):1495. https://doi.org/10.4314/tjpr.v13i9.16

    Article  Google Scholar 

  19. Ivanova V, Stefova M, Chinnici F (2010) Determination of the polyphenol contents in Macedonian grapes and wines by standardized spectrophotometric methods. J Serb Chem Soc 7585285366324(6345). https://doi.org/10.2298/JSC1001045I

  20. Goupy P, Hugues M, Boivin P, Amiot MJ (1999) Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric 79(12):1625–1634. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1625::AID-JSFA411>3.0.CO;2-8

    Article  CAS  Google Scholar 

  21. Abd El-Salam AE, Abd-El-Haleem D, Youssef AS, Zaki S, Abu-Elreesh G, El-Assar SA (2017) Isolation, characterization, optimization, immobilization and batch fermentation of bioflocculant produced by Bacillus aryabhattai strain PSK1. J Genet Eng Biotechnol 15:335–344. https://doi.org/10.1016/j.jgeb.2017.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  22. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manandhar S, Luitel S, Dahal RK (2019) In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria 2019. doi:https://doi.org/10.1155/2019/1895340, 1, 5

  25. Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R (2014) Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods 105:134–140. https://doi.org/10.1016/j.mimet.2014.07.024

    Article  CAS  PubMed  Google Scholar 

  26. O’May C, Tufenkji N (2011) The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl Environ Microbiol 77(9):3061–3067. https://doi.org/10.1128/AEM.02677-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. White RL, Burgess DS, Manduru M, Bosso JA (1996) Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 40(8):1914–1918 http://www.ncbi.nlm.nih.gov/pubmed/8843303. Accessed December 22, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ceylan O, Uğur A, Saraç N, Ozcan F, Baygar T (2014) The in vitro antibiofilm activity of Rosmarinus officinalis L essential oil against multiple antibiotic resistant Pseudomonas sp and Staphylococcus sp 12(3&4):82–86

  29. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  30. Li M-Y, Zhang J, Lu P, Xu J-L, Li S-P (2009) Evaluation of biological characteristics of bacteria contributing to biofilm formation. Pedosphere. 19(5):554–561. https://doi.org/10.1016/S1002-0160(09)60149-1

    Article  CAS  Google Scholar 

  31. Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y (2018) In vitro biofilm formation by <em>Staphylococcus aureus</em> isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int J Gen Med 11:25–32. https://doi.org/10.2147/IJGM.S153268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perez LRR, Costa MCN, Freitas ALP, Barth AL (2011) Evaluation of biofilm production by Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Brazilian J Microbiol 42:476–479 http://www.scielo.br/pdf/bjm/v42n2/11.pdf.

    Article  CAS  Google Scholar 

  33. Yayan J, Ghebremedhin B, Rasche K (2015) Antibiotic Resistance of Pseudomonas aeruginosa in pneumonia at a Single University Hospital Center in Germany over a 10-year period. Webber MA, ed. PLoS One 10(10):e0139836. https://doi.org/10.1371/journal.pone.0139836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Xu D, Shi L, Cai R, Li C, Yan H (2018) Association between agr type, virulence factors, Biofilm formation and antibiotic resistance of Staphylococcus aureus isolates From Pork Production. Front Microbiol 9:1876. https://doi.org/10.3389/fmicb.2018.01876

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qi L, Li H, Zhang C, Liang B, Li J, Wang L, du X, Liu X, Qiu S, Song H (2016) Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Front Microbiol 7:483. https://doi.org/10.3389/fmicb.2016.00483

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet (London, England) 358(9276):135–138. https://doi.org/10.1016/s0140-6736(01)05321-1

    Article  CAS  Google Scholar 

  37. Akinbobola AB, Sherry L, Mckay WG, Ramage G, Williams C (2017) Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection. J Hosp Infect 97(2):162–168. https://doi.org/10.1016/j.jhin.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  38. Husain FM, Ahmad I, Khan MS, Ahmad E, Tahseen Q, Khan MS, Alshabib NA (2015) Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of gram-negative bacteria. Front Microbiol 6:420. https://doi.org/10.3389/fmicb.2015.00420

    Article  PubMed  PubMed Central  Google Scholar 

  39. Romero CM, Vivacqua CG, Abdulhamid MB, Baigori MD, Slanis AC, Allori MCG, Tereschuk ML (2016) Biofilm inhibition activity of traditional medicinal plants from northwestern Argentina against native pathogen and environmental microorganisms. Rev Soc Bras Med Trop 49(6):703–712. https://doi.org/10.1590/0037-8682-0452-2016

    Article  PubMed  Google Scholar 

  40. Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM (2018) Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci 25(2):361–366. https://doi.org/10.1016/j.sjbs.2017.02.004

    Article  PubMed  Google Scholar 

  41. López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7):a000398. https://doi.org/10.1101/cshperspect.a000398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Breidenstein EBM, de la Fuente-Núñez C, Hancock REW (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19(8):419–426. https://doi.org/10.1016/j.tim.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  43. Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, Mililli L, Hunt C, Lu J, Osvath SR, Monahan LG, Cavaliere R, Charles IG, Wand MP, Gee ML, Prabhakar R, Whitchurch CB (2013) Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci U S A 110(28):11541–11546. https://doi.org/10.1073/pnas.1218898110

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa : a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:1–17. https://doi.org/10.1155/2015/759348

    Article  CAS  Google Scholar 

  45. Gopu V, Kothandapani S, Shetty PH (2015) Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb Pathog 79:61–69. https://doi.org/10.1016/j.micpath.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  46. Liu Q, Meng X, Li Y, Zhao C-N, Tang G-Y, Li H-B (2017) Antibacterial and antifungal activities of spices. Int J Mol Sci 18(6):1283. https://doi.org/10.3390/ijms18061283

    Article  CAS  PubMed Central  Google Scholar 

  47. Silva LN, Zimmer KR, Macedo AJ, Trentin DS (2016) Plant natural products targeting bacterial virulence factors. Chem Rev 116(16):9162–9236. https://doi.org/10.1021/acs.chemrev.6b00184

    Article  CAS  PubMed  Google Scholar 

  48. Defoirdt T, Pande GSJ, Baruah K, Bossier P (2013) The apparent quorum-sensing inhibitory activity of pyrogallol is a side effect of peroxide production. Antimicrob Agents Chemother 57(6):2870–2873. https://doi.org/10.1128/AAC.00401-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rudrappa T, Quinn WJ, Stanley-Wall NR, Bais HP (2007) A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots. Planta. 226(2):283–297. https://doi.org/10.1007/s00425-007-0480-8

    Article  CAS  PubMed  Google Scholar 

  50. Plyuta V, Zaitseva J, Lobakova E, Zagoskina N, Kuznetsov A, Khmel I (2013) Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS. 121(11):1073–1081. https://doi.org/10.1111/apm.12083

    Article  CAS  PubMed  Google Scholar 

  51. Ta C, Freundorfer M, Mah T-F, Otárola-Rojas M, Garcia M, Sanchez-Vindas P, Poveda L, Maschek J, Baker B, Adonizio A, Downum K, Durst T, Arnason J (2014) Inhibition of bacterial quorum sensing and biofilm formation by extracts of neotropical rainforest plants. Planta Med 80(04):343–350. https://doi.org/10.1055/s-0033-1360337

    Article  CAS  PubMed  Google Scholar 

  52. Annapoorani A, Umamageswaran V, Parameswari R, Pandian SK, Ravi AV (2012) Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des 26(9):1067–1077. https://doi.org/10.1007/s10822-012-9599-1

    Article  CAS  PubMed  Google Scholar 

  53. Nasri H, Bahmani M, Shahinfard N, Moradi Nafchi A, Saberianpour S, Rafieian KM (2015) Medicinal plants for the treatment of acne vulgaris: a review of recent evidences. Jundishapur J Microbiol 8(11):e25580. https://doi.org/10.5812/jjm.25580

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pramila DM, Xavier R, Marimuthu K et al (2012) Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Mentha piperita: Lamiaceae). J Med Plants Res 6(3):331–335. https://doi.org/10.5897/JMPR11.1232

    Article  Google Scholar 

  55. Cheesman M, Ilanko A, Blonk B, Cock I (2017) Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev 11(22):57–72. https://doi.org/10.4103/phrev.phrev_21_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luana Kamila A. Braga. Potentiation of in vitro antibiotic activity by Ocimum gratissimum L. African J Pharm Pharmacol. 2011;5(19). doi:https://doi.org/10.5897/AJPP11.414

  57. Stefanović OD, Stanković MS, Čomić LR. In vitro antibacterial efficacy of Clinopodium vulgare L. extracts and their synergistic interaction with antibiotics. 2011. https://www.semanticscholar.org/paper/In-vitro-antibacterial-efficacy-of-Clinopodium-L.-Stefanović-Stanković/604bae6a4a7f305d3cd647fdd3fbc743c426641a.

  58. Miklasińska-Majdanik M, Kępa M, Wojtyczka R, Idzik D, Wąsik T (2018) Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int J Environ Res Public Health 15(10):2321. https://doi.org/10.3390/ijerph15102321

    Article  CAS  PubMed Central  Google Scholar 

  59. Xie Y, Yang W, Tang F, Chen X, Ren L (2015) Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem 22(1):132–149 http://www.ncbi.nlm.nih.gov/pubmed/25245513.

    Article  CAS  PubMed  Google Scholar 

  60. Sanhueza L, Melo R, Montero R, Maisey K, Mendoza L, Wilkens M (2017) Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. Agbor G, ed. PLoS One 12(2):e0172273. https://doi.org/10.1371/journal.pone.0172273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lima VN, Oliveira-Tintino CDM, Santos ES, Morais LP, Tintino SR, Freitas TS, Geraldo YS, Pereira RLS, Cruz RP, Menezes IRA, Coutinho HDM (2016) Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: gallic acid, caffeic acid and pyrogallol. Microb Pathog 99:56–61. https://doi.org/10.1016/j.micpath.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  62. Amin MU, Khurram M, Khattak B, Khan J (2015) Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement Altern Med 15(1):59. https://doi.org/10.1186/s12906-015-0580-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fazly Bazzaz BS, Sarabandi S, Khameneh B, Hosseinzadeh H (2016) Effect of catechins, green tea extract and methylxanthines in combination with gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa: - combination therapy against resistant bacteria. Aust J Pharm 19(4):312–318. https://doi.org/10.3831/KPI.2016.19.032

    Article  Google Scholar 

  64. Yi Z-B, Yu Y, Liang Y-Z, Bao Z (2007) Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. J Pharm Biomed Anal 44(1):301–304. https://doi.org/10.1016/j.jpba.2007.02.018

    Article  CAS  PubMed  Google Scholar 

  65. Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR (2010) Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int J Biol Sci 6(6):556–568. https://doi.org/10.7150/ijbs.6.556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chusri S, Villanueva I, Voravuthikunchai SP, Davies J (2009) Enhancing antibiotic activity: a strategy to control Acinetobacter infections. J Antimicrob Chemother 64(6):1203–1211. https://doi.org/10.1093/jac/dkp381

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Mohamed Abu El-Wafa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editorial Responsibility: Luis Henrique Souza Guimaraes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu El-Wafa, W.M., Ahmed, R.H. & Ramadan, M.AH. Synergistic effects of pomegranate and rosemary extracts in combination with antibiotics against antibiotic resistance and biofilm formation of Pseudomonas aeruginosa. Braz J Microbiol 51, 1079–1092 (2020). https://doi.org/10.1007/s42770-020-00284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00284-3

Keywords

Navigation