Skip to main content
Log in

An empirical approach for predicting slug to pseudo-slug transition of air/water upward two-phase flow

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

Pseudo-slug (PSL) flow is an intermittent flow that has short, frothy, and chaotic slugs, which are not fully formed and have a structure velocity that falls between the conventional slug translational velocity and the wave celerity. It is important to predict the transition from conventional slug (SL) flow to PSL to determine the pressure gradients and liquid holdups. Literatures revealed that PSL can comprise a significant portion of the conventional flow pattern map, especially in highly deviated large-diameter (D) wellbores and pipelines. Several studies investigated the behavior of PSL; however, certain models were developed to predict SL/PSL transition. In the present study, an empirical model is derived employing the modified gas and liquid Froude numbers in measured dataset of Zhu (2019). The dataset consists of 125 data points, covering inclination angle (θ) from 2° to 89.4° with D of 0.1016 m. The range of superficial gas velocity is 0.124–3.313 m/s, with a constant liquid superficial velocity of 0.05 m/s. The suggested model accurately predicts all the data points and captures the expected effects of θ, D, and the gas density on the SL/PSL transition. The proposed model predicted well when validated against several independent experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulkadir, M., Zhao, D., Abdulkareem, L. A., Asikolaye, N. O., Hernandez-Perez, V. 2020. Insights into the transition from plug to slug flow in a horizontal pipe: An experimental study. Chemical Engineering Research and Design, 163: 85–95.

    Article  Google Scholar 

  • Abdul-Majeed, G. H. 1997. A comprehensive mechanistic model for vertical and inclined two-phase flow. Doctoral Dissertation. Baghdad, Iraq: University of Baghdad.

    Google Scholar 

  • Abdul-Majeed, G. H., Al-Mashat, A. M. 2019. A unified correlation for predicting slug liquid holdup in viscous two-phase flow for pipe inclination from horizontal to vertical. SN Applied Sciences, 1: 71.

    Article  Google Scholar 

  • Abdul-Majeed, G. H., Arabi, A., Soto-Cortes, G. 2021. Empirical correlations for prediction slug liquid holdup on slug–pseudo-slug and slug–churn transitions in vertical and inclined two-phase flow. SPE Production & Operations, 36: 721–733.

    Article  Google Scholar 

  • Abdul-Majeed, G. H., Firouzi, M. 2019. The suitability of the dimensionless terms used in correlating slug liquid holdup with flow parameters in viscous two-phase flows. International Communications in Heat and Mass Transfer, 108: 104323.

    Article  Google Scholar 

  • Abdul-Majeed, G. H., Firouzi, M. 2021. Prediction of slug/churn transition for viscous upward two-phase flows in vertical pipes. SPE Production & Operations, 36: 637–658.

    Article  Google Scholar 

  • Abduvayt, P., Manabe, R., Arihara, N. 2003. Effects of pressure and pipe diameter on gas-liquid two-phase flow behavior in pipelines. In: Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, SPE-84229-MS.

  • Al-Ruhaimani, F., Pereyra, E., Sarica, C., Al-Safran, E. M., Torres, C. F. 2017. Experimental analysis and model evaluation of high-liquid-viscosity two-phase upward vertical pipe flow. SPE Journal, 22: 712–735.

    Article  Google Scholar 

  • Alsaadi, Y. 2013. Liquid Loading in highly deviated gas wells. Doctoral Dissertation. Tulsa, Oklahoma, USA: University of Tulsa.

    Google Scholar 

  • Alsaadi, Y., Pereyra, E., Torres, C., Sarica, C. 2015. Liquid loading of highly deviated gas wells from 60° to 88°. In: Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, SPE-174852-MS.

  • Al-Safran, E., Sarica C., Zhang, H. Q., Brill, J. 2005. Investigation of slug flow characteristics in the valley of a hilly-terrain pipeline. International Journal of Multiphase Flow, 31: 337–357.

    Article  Google Scholar 

  • Ansari, A. M., Sylvester, N. D., Sarica, C., Shoham, O., Brill, J. P. 1994. A comprehensive mechanistic model for upward two-phase flow in wellbores. SPE Production & Facilities, 9: 143–151.

    Article  Google Scholar 

  • Arabi, A., Ragui, K., Salhi, Y., Filali, A. 2020a. Slug frequency for a gas–liquid plug flow: Review and development of a new correlation. International Communications in Heat and Mass Transfer, 118: 104841.

    Article  Google Scholar 

  • Arabi, A., Salhi, Y., Zenati, Y., Si-Ahmed, E. K., Legrand, J. 2020b. On gas–liquid intermittent flow in a horizontal pipe: Influence of sub-regime on slug frequency. Chemical Engineering Science, 211: 115251.

    Article  Google Scholar 

  • Aziz, K., Govier, G. W. 1972. Pressure drop in wells producing oil and gas. Journal of Canadian Petroleum Technology, 11(03): PETSOC-72-03-04.

    Article  Google Scholar 

  • Azzopardi, B. J., Wren, E. 2004. What is entrainment in vertical two-phase churn flow? International Journal of Multiphase Flow, 30: 89–103.

    Article  Google Scholar 

  • Barnea, D. 1987. A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations. International Journal of Multiphase Flow, 13: 1–12.

    Article  Google Scholar 

  • Barnea, D., Brauner, N. 1985. Holdup of the liquid slug in two phase intermittent flow. International Journal of Multiphase Flow, 11: 43–49.

    Article  Google Scholar 

  • Barnea, D., Shoham, O., Taitel, Y., Dukler, A. E. 1980. Flow pattern transition for gas–liquid flow in horizontal and inclined pipes. Comparison of experimental data with theory. International Journal of Multiphase Flow, 6: 217–225.

    Article  Google Scholar 

  • Barreto, C. V. 2016. Effect of foamer delivery location on horizontal wells deliquification. Doctoral Dissertation. Tulsa, Oklahoma, USA: University of Tulsa.

    Google Scholar 

  • Beggs, D. H., Brill, J. P. 1973. A study of two-phase flow in inclined pipes. Journal of Petroleum Technology, 25: 607–617.

    Article  Google Scholar 

  • Beggs, H. D., Robinson, J. R. 1975. Estimating the viscosity of crude oil systems. Journal of Petroleum Technology, 27: 1140–1141.

    Article  Google Scholar 

  • Bendiksen, K. H. 1984. An experimental investigation of the motion of long bubbles in inclined tubes. International Journal of Multiphase Flow, 10: 467–483.

    Article  Google Scholar 

  • Bendiksen, K., Espedal, M. 1992. Onset of slugging in horizontal gas–liquid pipe flow. International Journal of Multiphase Flow, 18: 237–247.

    Article  Google Scholar 

  • Bendlksen, K. H., Malnes, D., Moe, R., Nuland, S. 1991. The dynamic two-fluid model OLGA: Theory and application. SPE Production Engineering, 6: 171–180.

    Article  Google Scholar 

  • Bertola, V., Moschella, F. 2003. Slug velocity and liquid layer thickness before an abrupt contraction in horizontal gas–liquid flow. Experiments in Fluids, 34: 150–153.

    Article  Google Scholar 

  • Brito, R. M. 2015. Effect of horizontal well trajectory on two-phase gas–liquid flow behavior. Doctoral Dissertation. Tulsa, Oklahoma, USA: University of Tulsa.

    Google Scholar 

  • Butterworth, D., Pulling, D. J. 1972. A Visual Study of Mechanisms in Horizontal, Annular, Air–Water Flow. Atomic Energy Research Establishment.

  • De Leebeeck, A. 2010. A roll wave and slug tracking scheme for gas–liquid pipe flow. Doctoral Thesis. Trondheim, Norway: Norwegian University of Science and Technology.

    Google Scholar 

  • De Oliveira, W. R., de Paula, I. B., Martins, F. J. W. A., Farias, P. S. C., Azevedo, L. F. A. 2015. Bubble characterization in horizontal air–water intermittent flow. International Journal of Multiphase Flow, 69: 18–30.

    Article  Google Scholar 

  • Deendarlianto, Rahmandhika, A., Widyatama, A., Dinaryanto, O., Widyaparaga, A. 2019. Experimental study on the hydrodynamic behavior of gas–liquid air–water two-phase flow near the transition to slug flow in horizontal pipes. International Journal of Heat and Mass Transfer, 130: 187–203.

    Article  Google Scholar 

  • Dinaryanto, O., Prayitno, Y. A. K., Majid, A. I., Hudaya, A. Z., Nusirwan, Y. A., Widyaparaga, A. 2017. Experimental investigation on the initiation and flow development of gas–liquid slug two-phase flow in a horizontal pipe. Experimental Thermal and Fluid Science, 81: 93–108.

    Article  Google Scholar 

  • Dinaryanto, O., Widyatama, A., Prestinawati, M., Indarto, Deendarlianto. 2018. The characteristics of the sub regime of slug flow in 16 mm horizontal pipe. AIP Conference Proceedings, 2001: 030008.

    Article  Google Scholar 

  • Dukler, A., Taitel, A. 1977. Flow regime transitions for vertical upward gas liquid flow: A. A model for flow regime transitions for vertical upward gas liquid flow-effect of properties and line size. B. A theoretical approach to the prediction of flow regime transitions in unsteady horizontal liquid flow. Progress Report No. 2. Houston, Texas, USA: University of Houston.

    Google Scholar 

  • Duns, H., Ros, N. C. J. 1963. Vertical flow of gas and liquid mixtures in wells. World Petroleum Congress Proceedings, 1963: 451–465.

    Google Scholar 

  • Fabre, J., Liné, A. 1992. Modeling of two-phase slug flow. Annual Review of Fluid Mechanics, 24: 21–46.

    Article  Google Scholar 

  • Fan, Y. 2017. A study of onset of liquid accumulation and pseudo-slug flow characterization. Doctoral Dissertation. Tulsa, Oklahoma, USA: University of Tulsa.

    Google Scholar 

  • Fan, Y., Aljasser, M. 2023. Unified modeling of pseudo-slug and churn flows for liquid holdup and pressure gradient predictions in pipelines and wellbores. SPE Production & Operations, 38: 350–366.

    Article  Google Scholar 

  • Fan, Y., Pereyra, E., Sarica, C., Schleicher, E., Hampel, U. 2019. Analysis of flow pattern transition from segregated to slug flow in upward inclined pipes. International Journal of Multiphase Flow, 115: 19–39.

    Article  Google Scholar 

  • Fan, Y., Pereyra, E., Torres-Monzón, C., Aydin, T., Sarica, C. 2015. Experimental study on the onset of intermittent flow and pseudo-slug characteristics in upward inclined pipes. In: Proceedings of the 17th International Conference on Multiphase Production Technology, Cannes, France, BHR-2015-B1.

  • Fan, Y., Soedarmo, A., Pereyra, E., Sarica, C. 2022. A comprehensive review of pseudo-slug flow. Journal of Petroleum Science and Engineering, 217: 110879.

    Article  Google Scholar 

  • Felizola, H., Shoham, O. 1995. A unified model for slug flow in upward inclined pipes. Journal of Energy Resources Technology, 117: 7–12.

    Article  Google Scholar 

  • Gokcal, B., Al-Sarkhi, A. S., Sarica, C. 2009. Effects of high oil viscosity on drift velocity for horizontal and upward inclined pipes. SPE Projects, Facilities & Construction, 4: 32–40.

    Article  Google Scholar 

  • Gonçalves, J. L., Mazza, R. A. 2022. A transient analysis of slug flow in a horizontal pipe using slug tracking model: Void and pressure wave. International Journal of Multiphase Flow, 149: 103972.

    Article  MathSciNet  Google Scholar 

  • Guner, M., Pereyra, E., Sarica, C., Torres, C. 2015. An experimental study of low liquid loading in inclined pipes from 90° to 45°. In: Proceedings of the SPE Production and Operations Symposium, Oklahoma City, Oklahoma, USA, SPE-173631-MS.

  • Hagedorn, A. R., Brown, K. E. 1965. Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits. Journal of Petroleum Technology, 17: 475–484.

    Article  Google Scholar 

  • Hasan, A. R., Kabir, C. S. 1992. Two-phase flow in vertical and inclined annuli. International Journal of Multiphase Flow, 18: 279–293.

    Article  Google Scholar 

  • Hewitt, G. F. 2012. Churn and wispy annular flow regimes in vertical gas–liquid flows. Energy & Fuels, 26: 4067–4077.

    Article  Google Scholar 

  • Hewitt, G. F., Jayanti, S. 1993. To churn or not to churn. International Journal of Multiphase Flow, 19: 527–529.

    Article  Google Scholar 

  • Humami, F., Dinaryanto, O., Hudaya, A. Z., Widyatama, A., Indarto, Deendarlianto. 2018. Experimental study on the characteristics of flow pattern transitions of air–water two-phase flow in a horizontal pipe. AIP Conference Proceedings, 2001: 030005.

    Article  Google Scholar 

  • Hunt, A., Pendleton, J., Byars, M. 2008. Non-intrusive measurement of volume and mass using electrical capacitance tomography. In: Proceedings of ASME 7th Biennial Conference on Engineering Systems Design and Analysis, Manchester, UK, 605–611.

  • Jayanti, S., Hewitt, G. F. 1992. Prediction of the slug-to-churn flow transition in vertical two-phase flow. International Journal of Multiphase Flow, 18: 847–860.

    Article  Google Scholar 

  • Jayanti, S., Hewitt, G. F., Low, D. E. F., Hervieu, E. 1993. Observation of flooding in the Taylor bubble of co-current upwards slug flow. International Journal of Multiphase Flow, 19: 531–534.

    Article  Google Scholar 

  • Kesana, N. R. 2013. Erosion in multiphase pseudo slug flow with emphasis on sand sampling and pseudo slug characteristics. Doctoral Dissertation. Tulsa, Oklahoma, USA: University of Tulsa.

    Google Scholar 

  • Kesana, N. R., Parsi, M., Vieira, R. E., Azzopardi, B., Schleicher, E., McLaury, B. S., Shirazi, S. A., Hampel, U. 2017. Visualization of gas–liquid multiphase pseudo-slug flow using Wire-Mesh Sensor. Journal of Natural Gas Science and Engineering, 46: 477–490.

    Article  Google Scholar 

  • Kjølaas, J., Smith, I. E., Brekken, C. 2018. Pseudo slug flow in viscous oil systems—Experiments and modelling with LedaFlow. In: Proceedings of the BHR North American Conference on Multiphase Production Technology, Banff, Canada, BHR-2018-461.

  • Kokal, S. L., Stanislav, J. F. 1989a. An experimental study of two-phase flow in slightly inclined pipes—I. Flow patterns. Chemical Engineering Science, 44: 665–679.

    Article  Google Scholar 

  • Kokal, S. L., Stanislav, J. F. 1989b. An experimental study of two-phase flow in slightly inclined pipes—II. Liquid holdup and pressure drop. Chemical Engineering Science, 44: 681–693.

    Article  Google Scholar 

  • Kong, R., Rau, A., Kim, S., Bajorek, S., Tien, K., Hoxie, C. 2018. Experimental study of horizontal air–water plug-to-slug transition flow in different pipe sizes. International Journal of Heat and Mass Transfer, 123: 1005–1020.

    Article  Google Scholar 

  • Lin, P. Y., Hanratty, T. J. 1987a. Detection of slug flow from pressure measurements. International Journal of Multiphase Flow, 13: 13–21.

    Article  Google Scholar 

  • Lin, P. Y., Hanratty, T. J. 1987b. Effect of pipe diameter on flow patterns for air–water flow in horizontal pipes. International Journal of Multiphase Flow, 13: 549–563.

    Article  Google Scholar 

  • Lockett, T., Fan, Y., Ajani, A. 2017. Advances in modelling hydrodynamic slug flow in production systems. In: Proceedings of the 18th International Conference on Multiphase Production Technology, Cannes, France, BHR-2017-293.

  • Loh, W. L., Hernandez-Perez, V., Tam, N. D., Wan, T. T., Zhao, Y., Premanadhan, V. K. 2016. Experimental study of the effect of pressure and gas density on the transition from stratified to slug flow in a horizontal pipe. International Journal of Multiphase Flow, 85: 196–208.

    Article  Google Scholar 

  • Maley, L. 1997. A study of slug flow characteristics in large diameter horizontal multiphase pipelines. Doctoral Dissertation. Athens, Ohio, USA: Ohio University.

    Google Scholar 

  • Mohmmed, A. O., Al-Kayiem, H. H., Osman, A. B. 2021. Investigations on the slug two-phase flow in horizontal pipes: Past, presents, and future directives. Chemical Engineering Science, 238: 116611.

    Article  Google Scholar 

  • Mukherjee, H., Brill, J. P. 1985. Empirical equations to predict flow patterns in two-phase inclined flow. International Journal of Multiphase Flow, 11: 299–315.

    Article  Google Scholar 

  • Nicholson, M. K., Aziz, K., Gregory, G. A. 1978. Intermittent two phase flow in horizontal pipes: Predictive models. The Canadian Journal of Chemical Engineering, 56: 653–663.

    Article  Google Scholar 

  • Omebere-Iyari, N. K., Azzopardi, B. J., Lucas, D., Beyer, M., Prasser, H. M. 2008. The characteristics of gas/liquid flow in large risers at high pressures. International Journal of Multiphase Flow, 34: 461–476.

    Article  Google Scholar 

  • Orell, A., Rembrand, R. 1986. A model for gas–liquid slug flow in a vertical tube. Industrial & Engineering Chemistry Fundamentals, 25: 196–206.

    Article  Google Scholar 

  • Orkiszewski, J. 1967. Predicting two-phase pressure drops in vertical pipe. Journal of Petroleum Technology, 19: 829–838.

    Article  Google Scholar 

  • Owen, D. G. 1986. An experimental and theoretical analysis of equilibrium annular flows. Ph.D. Dissertation. Birmingham, UK: University of Birmingham.

    Google Scholar 

  • Pagan, E. V. 2016. Modeling churn and annular flow regimes in vertical and near-vertical pipes with small and large diameters. Master Thesis. Baton Rouge, LA, USA: Louisiana State University.

    Google Scholar 

  • Pagan, E., Williams, W. C., Kam, S., Waltrich, P. J. 2017. A simplified model for churn and annular flow regimes in small- and large-diameter pipes. Chemical Engineering Science, 162: 309–321.

    Article  Google Scholar 

  • Parsi, M., Azzopardi, B. J., Al-Sarkhi, A., Kesana, N. R., Vieira, R. E., Torres, C. F., McLaury, B. S., Shirazi, S. A., Schleicher, E., Hampel, U. 2017. Do huge waves exist in horizontal gas–liquid pipe flow? International Journal of Multiphase Flow, 96: 1–23.

    Article  MathSciNet  Google Scholar 

  • Parsi, M., Najmi, K., Najafifard, F., Hassani, S., McLaury, B. S., Shirazi, S. A. 2014. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. Journal of Natural Gas Science and Engineering, 21: 850–873.

    Article  Google Scholar 

  • Parsi, M., Vieira, R. E., Agrawal, M., Srinivasan, V., Mclaury, B. S., Shirazi, S. A., Schleicher, E., Hampel, U. 2015. Computational fluid dynamics (CFD) simulation of multiphase flow and validating using wire mesh sensor. In: Proceedings of the 17th International Conference on Multiphase Production Technology, Cannes, France, BHR-2015-D4.

  • Rastogi, A., Fan, Y. 2020. Experimental and modeling study of onset of liquid accumulation. Journal of Natural Gas Science and Engineering, 73: 103064.

    Article  Google Scholar 

  • Rodrigues, R. L. P., Bertoldi, D., dos Santos, E. N., Schneider, F. A., Neto, M. A. M., da Silva, M. J., Morales, R. E. M. 2019. Experimental analysis of downward liquid-gas slug flow in slightly inclined pipes. Experimental Thermal and Fluid Science, 103: 222–233.

    Article  Google Scholar 

  • Ruder, Z., Hanratty, T. J. 1990. A definition of gas–liquid plug flow in horizontal pipes. International Journal of Multiphase Flow, 16: 233–242.

    Article  Google Scholar 

  • Sharaf, S., van der Meulen, G. P., Agunlejika, E. O., Azzopardi, B. J. 2016. Structures in gas–liquid churn flow in a large diameter vertical pipe. International Journal of Multiphase Flow, 78: 88–103.

    Article  Google Scholar 

  • Shoham, O. 2006. Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes. Society of Petroleum Engineers.

  • Shoham, O., Dukler, A. E., Taitel, Y. 1982. Heat transfer during intermittent/slug flow in horizontal tubes. Industrial & Engineering Chemistry Fundamentals, 21: 312–319.

    Article  Google Scholar 

  • Soedarmo, A., Fan, Y., Pereyra, E., Sarica, C. 2018a. A unit cell model for gas–liquid pseudo-slug flow in pipes. Journal of Natural Gas Science and Engineering, 60: 125–143.

    Article  Google Scholar 

  • Soedarmo, A., Pereyra, E., Sarica, C. 2018b. A simplified model for steady-state pseudo-slug flow. In: Proceedings of the Offshore Technology Conference, Houston, Texas, USA, OTC-28996-MS.

  • Soedarmo, A., Soto-Cortes, G., Pereyra, E., Karami, H., Sarica, C. 2018c. Analogous behavior of pseudo-slug and churn flows in high viscosity liquid system and upward inclined pipes. International Journal of Multiphase Flow, 103: 61–77.

    Article  Google Scholar 

  • Soleimani, A., Al-Sarkhi, A., Hanratty, T. J. 2002. Effect of drag-reducing polymers on pseudo-slugs—Interfacial drag and transition to slug flow. International Journal of Multiphase Flow, 28: 1911–1927.

    Article  Google Scholar 

  • Sylvester, N. D. 1987. A mechanistic model for two-phase vertical slug flow in pipes. Journal of Energy Resources Technology, 109: 206–213.

    Article  Google Scholar 

  • Tay, B. L., Thorpe, R. B. 2014. Hydrodynamic forces acting on pipe bends in gas–liquid slug flow. Chemical Engineering Research and Design, 92: 812–825.

    Article  Google Scholar 

  • Taylor, N. S. H., Hewitt, I. J., Ockendon, J. R., Witelski, T. P. 2014. A new model for disturbance waves. International Journal of Multiphase Flow, 66: 38–45.

    Article  MathSciNet  Google Scholar 

  • Tengesdal, J. Ø., Kaya, A. S., Sarica, C. 1999. Flow-pattern transition and hydrodynamic modeling of churn flow. SPE Journal, 4: 342–348.

    Article  Google Scholar 

  • Thaker, J., Banerjee, J. 2015. Characterization of two-phase slug flow sub-regimes using flow visualization. Journal of Petroleum Science and Engineering, 135: 561–576.

    Article  Google Scholar 

  • Thaker, J., Banerjee, J. 2016. On intermittent flow characteristics of gas–liquid two-phase flow. Nuclear Engineering and Design, 310: 363–377.

    Article  Google Scholar 

  • Thaker, J., Banerjee, J. 2017. Transition of plug to slug flow and associated fluid dynamics. International Journal of Multiphase Flow, 91: 63–75.

    Article  Google Scholar 

  • Vaze, M. J., Banerjee, J. 2011. Experimental visualization of two-phase flow patterns and transition from stratified to slug flow. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225: 382–389.

    Google Scholar 

  • Veritas, D. N. 2006. Free spanning pipelines. In: Recommended Practice DNV-RPF105. Bærum, Norway: Det Norske Veritas, 1–46.

    Google Scholar 

  • Waltrich, P. J., Falcone, G., Barbosa, J. R. 2013. Axial development of annular, churn and slug flows in a long vertical tube. International Journal of Multiphase Flow, 57: 38–48.

    Article  Google Scholar 

  • Wang, K., Bai, B., Ma, W. 2013. Huge wave and drop entrainment mechanism in gas–liquid churn flow. Chemical Engineering Science, 104: 638–646.

    Article  Google Scholar 

  • Wilkens, R., Jepson, W. P. 1996. Studies of multiphase flow in high pressure horizontal and +5 degree inclined pipelines. In: Proceedings of the 6th International Offshore and Polar Engineering Conference, Los Angeles, California, USA, ISOPE-I-96-104.

  • Woods, B. D., Hanratty, T. J. 1999. Influence of Froude number on physical processes determining frequency of slugging in horizontal gas–liquid flows. International Journal of Multiphase Flow, 25: 1195–1223.

    Article  Google Scholar 

  • Zhang, H. Q., Wang, Q., Sarica, C., Brill, J. P. 2003a. A unified mechanistic model for slug liquid holdup and transition between slug and dispersed bubble flows. International Journal of Multiphase Flow, 29: 97–107.

    Article  Google Scholar 

  • Zhang, H. Q., Wang, Q., Sarica, C., Brill, J. P. 2003b. Unified model for gas–liquid pipe flow via slug dynamics—Part 1: Model development. Journal of Energy Resources Technology, 125: 266–273.

    Article  Google Scholar 

  • Zhu, Q. 2019. Intermittent flow analysis in inclined large diameter pipes. Doctoral Dissertation. Tulsa, Oklahoma, USA: University of Tulsa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Abdul-Majeed.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul-Majeed, G., Al-Sarkhi, A., Mohmmed, A.O. et al. An empirical approach for predicting slug to pseudo-slug transition of air/water upward two-phase flow. Exp. Comput. Multiph. Flow 6, 154–169 (2024). https://doi.org/10.1007/s42757-023-0170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-023-0170-1

Keywords

Navigation