Skip to main content
Log in

Numerical study of the effect of nasopharynx airway obstruction on the transport and deposition of nanoparticles in nasal airways

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

Although there is abundant literature for both experimental and numerical studies of respiratory aerosol exposure in nasal airways, research efforts concentrating on diseased nasal cavities undergoing pathological changes remain significantly less. This paper presents a comparative study of pre- and post-operative nasal airway models based on a 3-year-old nasal cavity model with severe nasopharynx obstruction due to the presence of adenoid hypertrophy. By numerically comparing the airflow dynamics and nanoparticle deposition characteristics in original diseased and post-operative healthy nasal airway models, our results demonstrated that nasopharynx obstruction can induce significantly biased flow distribution in the main nasal passage, despite the obstruction site is located downstream of the nasal airway. In addition, the regional particle deposition analysis revealed that the affected area can receive better nanoparticle aerosol delivery after receiving surgical treatment (adenoidectomy) due to restored normal flow fields. More importantly, ventilation and particle deposition improvements were achieved for the olfactory region in the post-operative nasal model, which indicates a more promising olfactory drug delivery using nanoparticles. Research findings are expected to provide scientific evidence for adenoidectomy planning and intranasal aerosol therapy, which can substantially improve present clinical treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bair, W. J. 1995. The ICRP human respiratory tract model for radiological protection. Radiation Protection Dosimetry, 60: 307–310.

    Article  Google Scholar 

  • Baugh, R. F., Archer, S. M., Mitchell, R. B., Rosenfeld, R. M., Amin, R., Burns, J. J., Darrow, D. H., Giordano, T., Litman, R. S., Li, K. K. et al. 2011. Clinical practice guideline: Tonsillectomy in children. Otolaryngology-Head and Neck Surgery, 144: S1–S30.

    Article  Google Scholar 

  • Bitter, C., Suter-Zimmermann, K., Surber, C. 2011. Nasal drug delivery in humans. Current Problems in Dermatology, 40: 20–35.

    Article  Google Scholar 

  • Chadha, N. K., Zhang, L., Mendoza-Sassi, R. A., César, J. A. 2009. Using nasal steroids to treat nasal obstruction caused by adenoid hypertrophy: Does it work? Otolaryngology-Head and Neck Surgery, 140: 139–147.

    Article  Google Scholar 

  • Cheng, K. H., Cheng, Y. S., Yeh, H. C., Swift, D. L. 1995a. Deposition of ultrafine aerosols in the head airways during natural breathing and during simulated breath holding using replicate human upper airway casts. Aerosol Science and Technology, 23: 465–474.

    Article  Google Scholar 

  • Cheng, Y. S., Smith, S. M., Yeh, H. C., Kim, D. B., Cheng, K. H., Swift, D. L. 1995b. Deposition of ultrafine aerosols and thoron progeny in replicas of nasal airways of young children. Aerosol Science and Technology, 23: 541–552.

    Article  Google Scholar 

  • Cheng, Y. S., Yeh, H. C., Guilmette, R. A., Simpson, S. Q., Cheng, K. H., Swift, D. L. 1996. Nasal deposition of ultrafine particles in human volunteers and its relationship to airway geometry. Aerosol Science and Technology, 25: 274–291.

    Article  Google Scholar 

  • Chohan, A., Lal, A., Chohan, K., Chakravarti, A., Gomber, S. 2015. Systematic review and meta-analysis of randomized controlled trials on the role of mometasone in adenoid hypertrophy in children. International Journal of Pediatric Otorhinolaryngology, 79: 1599–1608.

    Article  Google Scholar 

  • Dahl, R., Mygind, N. 1998. Anatomy, physiology and function of the nasal cavities in health and disease. Advanced Drug Delivery Reviews, 29: 3–12.

    Article  Google Scholar 

  • Deborah, S., Prathibha, K. 2014. Measurement of nasal mucociliary clearance. Clinical Research in Pulmonology, 2(2): 1019.

    Google Scholar 

  • DeMayo, M. M., Song, Y. J. C., Hickie, I. B., Guastella, A. J. 2017. A review of the safety, efficacy and mechanisms of delivery of nasal oxytocin in children: Therapeutic potential for autism and prader-willi syndrome, and recommendations for future research. Paediatr Drugs, 19: 391–410.

    Article  Google Scholar 

  • Dong, J., Inthavong, K., Tu, J. 2016. Multiphase flows in biomedical applications. In: Handbook of Multiphase Flow Science and Technology. Yeoh, G. Ed. Singapore: Springer Singapore, 1–24.

    Google Scholar 

  • Dong, J., Ma, J., Shang, Y., Inthavong, K., Qiu, D., Tu, J., Frank-Ito, D. 2018a. Detailed nanoparticle exposure analysis among human nasal cavities with distinct vestibule phenotypes. Journal of Aerosol Science, 121: 54–65.

    Article  Google Scholar 

  • Dong, J., Shang, Y., Inthavong, K., Chan, H. K., Tu, J. 2017. Numerical comparison of nasal aerosol administration systems for efficient nose-to-brain drug delivery. Pharmaceutical Research, 35: 5.

    Article  Google Scholar 

  • Dong, J., Shang, Y., Inthavong, K., Chan, H. K., Tu, J. 2018b. Partitioning of dispersed nanoparticles in a realistic nasal passage for targeted drug delivery. International Journal of Pharmaceutics, 543: 83–95.

    Article  Google Scholar 

  • Drago, L., De Vecchi, E., Torretta, S., Mattina, R., Marchisio, P., Pignataro, L. 2012. Biofilm formation by bacteria isolated from upper respiratory tract before and after adenotonsillectomy. APMIS, 120: 410–416.

    Article  Google Scholar 

  • Elad, D., Wolf, M., Keck, T. 2008. Air-conditioning in the human nasal cavity. Respiratory Physiology & Neurobiology, 163: 121–127.

    Article  Google Scholar 

  • Fişgin, T., Gurer, Y., Teziç, T., Senbil, N., Zorlu, P., Okuyaz, C., Akgün, D. 2002. Effects of intranasal midazolam and rectal diazepam on acute convulsions in children: Prospective randomized study. Journal of Child Neurology, 17: 123–126.

    Article  Google Scholar 

  • Garcia, G. J. M., Tewksbury, E. W., Wong, B. A., Kimbell, J. S. 2009. Interindividual variability in nasal filtration as a function of nasal cavity geometry. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 22: 139–155.

    Article  Google Scholar 

  • Illum, L. 2012. Nasal drug delivery - Recent developments and future prospects. Journal of Controlled Release, 161: 254–263.

    Article  Google Scholar 

  • Keeler, J. A., Patki, A., Woodard, C. R., Frank-Ito, D. O. 2016. A computational study of nasal spray deposition pattern in four ethnic groups. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 29: 153–166.

    Article  Google Scholar 

  • Maigler, F., Ladel, S., Flamm, J., Gänger, S., Kurpiers, B., Kiderlen, S., Völk, R., Hamp, C., Hartung, S., Spiegel, S., et al. 2021. Selective CNS targeting and distribution with a refined region-specific intranasal delivery technique via the olfactory mucosa. Pharmaceutics, 13: 1904.

    Article  Google Scholar 

  • Moghaddam, M. G., Garcia, G. J. M., Frank-Ito, D. O., Kimbell, J. S., Rhee, J. S. 2020. Virtual septoplasty: A method to predict surgical outcomes for patients with nasal airway obstruction. International Journal of Computer Assisted Radiology and Surgery, 15: 725–735.

    Article  Google Scholar 

  • Moshksayan, K., Bahmanzadeh, H., Faramarzi, M., Sadrizadeh, S., Ahmadi, G., Abouali, O. 2022. In-silico investigation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual transnasal sphenoidotomy surgery. Computer Methods in Biomechanics and Biomedical Engineering, 25: 1000–1014.

    Article  Google Scholar 

  • Munkholm, M., Mortensen, J. 2014. Mucociliary clearance: Pathophysiological aspects. Clinical Physiology and Functional Imaging, 34: 171–177.

    Article  Google Scholar 

  • Noback, M. L., Harvati, K., Spoor, F. 2011. Climate-related variation of the human nasal cavity. American Journal of Physical Anthropology, 145: 599–614.

    Article  Google Scholar 

  • Pereira, L., Monyror, J., Almeida, F. T., Almeida, F. R., Guerra, E., Flores-Mir, C., Pachêco-Pereira, C. 2018. Prevalence of adenoid hypertrophy: A systematic review and meta-analysis. Sleep Medicine Reviews, 38: 101–112.

    Article  Google Scholar 

  • Rogers, D. F. 1994. Airway goblet cells: Responsive and adaptable front-line defenders. European Respiratory Journal, 7: 1690–1706.

    Article  Google Scholar 

  • Shang, Y. D., Inthavong, K., Tu, J. Y. 2015. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Computers and Fluids, 114: 141–150.

    Article  MathSciNet  Google Scholar 

  • Siu, J., Dong, J., Inthavong, K., Shang, Y., Douglas, R. G. 2020. Quantification of airflow in the sinuses following functional endoscopic sinus surgery. Rhinology, 58: 257–265.

    Google Scholar 

  • Siu, J., Inthavong, K., Dong, J., Shang, Y., Douglas, R. G. 2021. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty - A computational fluid dynamics study. Clinical Biomechanics, 81: 105237.

    Article  Google Scholar 

  • Spiegel, M., Redel, T., Zhang, Y. J., Struffert, T., Hornegger, J., Grossman, R. G., Doerfler, A., Karmonik, C. 2011. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Computer Methods in Biomechanics and Biomedical Engineering, 14: 9–22.

    Article  Google Scholar 

  • Storey-Bishoff, J., Noga, M., Finlay, W. H. 2008. Deposition of micrometer-sized aerosol particles in infant nasal airway replicas. Journal of Aerosol Science, 39: 1055–1065.

    Article  Google Scholar 

  • Tian, L., Shang, Y., Dong, J., Inthavong, K., Tu, J. 2017. Human nasal olfactory deposition of inhaled nanoparticles at low to moderate breathing rate. Journal of Aerosol Science, 113: 189–200.

    Article  Google Scholar 

  • Tu, J., Inthavong, K., Ahmadi, G. 2013. Reconstruction of the human airways. In: Computational Fluid and Particle Dynamics in the Human Respiratory System. Biological and Medical Physics, Biomedical Engineering. Dordrecht: Springer Netherlands, 45–71.

    Google Scholar 

  • Xi, J., Berlinski, A., Zhou, Y., Greenberg, B., Ou, X. 2012. Breathing resistance and ultrafine particle deposition in nasal-laryngeal airways of a newborn, an infant, a child, and an adult. Annals of Biomedical Engineering, 40: 2579–2595.

    Article  Google Scholar 

  • Xi, J., Si, X., Kim, J. W., Berlinski, A. 2011. Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. Journal of Aerosol Science, 42: 156–173.

    Article  Google Scholar 

  • Yang, Y., Luo, H., Liu, R., Li, G., Yu, Y., An, T. 2020. The exposure risk of typical VOCs to the human beings via inhalation based on the respiratory deposition rates by proton transfer reaction-time of flight-mass spectrometer. Ecotoxicology and Environmental Safety, 197: 110615.

    Article  Google Scholar 

  • Zhou, Y., Guo, M., Xi, J., Irshad, H., Cheng, Y. S. 2014. Nasal deposition in infants and children. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 27: 110–116.

    Article  Google Scholar 

  • Zwartz, G. J., Guilmette, R. A. 2001. Effect of flow rate on particle deposition in a replica of a human nasal airway. Inhalation Toxicology, 13: 109–127.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Australian Research Council (Project IDs. DE210101549 and DE180101138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingliang Dong or Jiyuan Tu.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Dong, J., Zhang, Y. et al. Numerical study of the effect of nasopharynx airway obstruction on the transport and deposition of nanoparticles in nasal airways. Exp. Comput. Multiph. Flow 4, 399–408 (2022). https://doi.org/10.1007/s42757-022-0143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-022-0143-9

Keywords

Navigation