Skip to main content
Log in

Liquid volume and squeeze force effects on nasal irrigation using Volume of Fluid modelling

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

For various sinonasal conditions, including chronic rhinosinusitis, saline irrigation is an accepted standard-of-care treatment. This study was aimed at determining the effect of increased irrigation volumes and greater squeeze force on mucosal irrigation. A sinonasal cavity computational model was reconstructed from high-resolution CT scans of a healthy, unoperated 25-year old female. Seven combinations of irrigation volumes (70, 150, 200, and 400 mL) and squeeze forces (ramp time 0.1, 0.5, and 1.0 s) at a fixed head tilt of 0 degrees to the horizontal (Frankfort position) were performed. Velocity, pressure, and wall shear stress, together with mapping of surface coverage and residual volumes at specific locations and time were demonstrated. Higher volume irrigation (400 mL) and greater squeeze force (ramp time 0.1 s) improved irrigation coverage on the ipsilateral and contralateral sinonasal surfaces and increased shear force (approximately 140 Pa). An increase in irrigation volume from 70 to 150 mL approximately doubled sinus surface coverage and from 70 to 200 mL tripled sinus surface coverage. A faster squeeze also contributed to increased sinus surface coverage but its effect was less influential. We infer that the greater irrigation volume and squeeze force improve therapeutic benefit in terms of lavage and distribution of topical medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α l,g :

volume fraction of liquid and gas

κ :

surface curvature

μ :

dynamic viscosity

∇:

gradient

∇·:

divergence

⊗:

outer product of two tensors

ρ l,g :

density of liquid and gas

σ :

surface tension coefficient

\({\vec F}\) :

surface tension force

\({\vec g}\) :

gravity

HPC:

high performance computing

p :

static pressure

R 1,2 :

surface curvature as measured by two radii in orthogonal directions

t :

time

\({\vec v}\) :

velocity vector

WSS:

wall shear stress

References

  • Alobid, I., Mullol, J. 2012. Role of medical therapy in the management of nasal polyps. Current Allergy and Asthma Reports, 12: 144–153.

    Article  Google Scholar 

  • Barham, H. P., Ramakrishnan, V. R., Knisely, A., Do, T. Q. P., Chan, L. S., Gunaratne, D. A., Weston, J. D., Seneviratne, S., Marcells, G. N., Sacks, R., Harvey, R. J. 2016. Frontal sinus surgery and sinus distribution of nasal irrigation. International Forum of Allergy & Rhinology, 6: 238–242.

    Article  Google Scholar 

  • Brackbill, J., Kothe, D., Zemach, C. 1992. A continuum method for modeling surface tension. Journal of Computational Physics, 100: 335–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Calmet, H., Inthavong, K., Eguzkitza, B., Lehmkuhl, O., Houzeaux, G., Vázquez, M. 2019. Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions. PLoS One, 14: e0221330.

    Article  Google Scholar 

  • Calmet, H., Inthavong, K., Owen, H., Dosimont, D., Lehmkuhl, O., Houzeaux, G., Vázquez, M. 2021. Computational modelling of nasal respiratory flow. Computer Methods in Biomechanics and Biomedical Engineering, 24: 440–458.

    Article  Google Scholar 

  • Campos, J., Heppt, W., Weber, R. 2013. Nasal douches for diseases of the nose and the paranasal sinuses—A comparative in vitro investigation. European Archives of Oto-Rhino-Laryngology, 270: 2891–2899.

    Article  Google Scholar 

  • Chen, P. G., Murphy, J., Alloju, L. M., Boase, S., Wormald, P. J. 2017. Sinus penetration of a pulsating device versus the classic squeeze bottle in cadavers undergoing sinus surgery. Annals of Otology, Rhinology & Laryngology, 126: 9–13.

    Article  Google Scholar 

  • Covello, V., Pipolo, C., Saibene, A., Felisati, G., Quadrio, M. 2018. Numerical simulation of thermal water delivery in the human nasal cavity. Computers in Biology and Medicine, 100: 62–73.

    Article  Google Scholar 

  • Craig, J. R., Palmer, J. N., Zhao, K. 2017. Computational fluid dynamic modeling of nose-to-ceiling head positioning for sphenoid sinus irrigation. International Forum of Allergy & Rhinology, 7: 474–479.

    Article  Google Scholar 

  • De Gabory, L., Kérimian, M., Baux, Y., Boisson, N., Bordenave, L. 2020. Computational fluid dynamics simulation to compare large volume irrigation and continuous spraying during nasal irrigation. International Forum of Allergy & Rhinology, 10: 41–48.

    Article  Google Scholar 

  • Even-Tzur, N., Kloog, Y., Wolf, M., Elad, D. 2008. Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophysical Journal, 95: 2998–3008.

    Article  Google Scholar 

  • Farnoud, A., Baumann, I., Rashidi, M. M., Schmid, O., Gutheil, E. 2020a. Simulation of patient-specific bi-directional pulsating nasal aerosol dispersion and deposition with clockwise 45° and 90° nosepieces. Computers in Biology and Medicine, 123: 103816.

    Article  Google Scholar 

  • Farnoud, A., Tofighian, H., Baumann, I., Garcia, G. J. M., Schmid, O., Gutheil, E., Rashidi, M. M. 2020b. Large eddy simulations of airflow and particle deposition in pulsating bi-directional nasal drug delivery. Physics of Fluids, 32: 101905.

    Article  Google Scholar 

  • Farzal, Z., Basu, S., Burke, A., Fasanmade, O. O., Lopez, E. M., Bennett, W. D., Ebert, C. S. Jr., Zanation, A. M., Senior, B. A., Kimbell, J. S. 2019. Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients. International Forum of Allergy & Rhinology, 9: 746–758.

    Article  Google Scholar 

  • Frank-Ito, D. O., Kimbell, J. S., Borojeni, A. A. T., Garcia, G. J. M., Rhee, J. S. 2019. A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction. Clinical Biomechanics, 61: 172–180.

    Article  Google Scholar 

  • Frank-Ito, D. O., Wofford, M., Schroeter, J. D., Kimbell, J. S. 2016. Influence of mesh density on airflow and particle deposition in sinonasal airway modeling. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 29: 46–56.

    Article  Google Scholar 

  • Grayson, J. W., Cavada, M., Wong, E., Lien, B., Duvnjak, M., Campbell, R., Kalish, L., Sacks, R., Harvey, R. J. 2019. Effects of sphenoid surgery on nasal irrigation delivery. International Forum of Allergy & Rhinology, 9: 971–976.

    Article  Google Scholar 

  • Grobler, A., Weitzel, E. K., Buele, A., Jardeleza, C., Cheong, Y. C., Field, J., Wormald, P. J. 2008. Pre- and postoperative sinus penetration of nasal irrigation. The Laryngoscope, 118: 2078–2081.

    Article  Google Scholar 

  • Hahn, I., Scherer, P. W., Mozell, M. M. 1993. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. Journal of Applied Physiology, 75: 2273–2287.

    Article  Google Scholar 

  • Harvey, R., Debnath, N., Srubiski, A., Bleier, B., Schlosser, R. J. 2009. Fluid residuals and drug exposure in nasal irrigation. Otolaryngology Head and Neck Surgery, 141: 757–761.

    Article  Google Scholar 

  • Head, K., Snidvongs, K., Glew, S., Scadding, G., Schilder, A.G., Philpott, C., Hopkins, C. 2018. Saline irrigation for allergic rhinitis. Cochrane Database of Systematic Reviews, 6: CD012597

    Google Scholar 

  • Hinze, J. 1975. Turbulence. Mcgraw-Hill Publishing Co.

  • Hirt, C., Nichols, B. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39: 201–225.

    Article  MATH  Google Scholar 

  • Inthavong, K. 2020. From indoor exposure to inhaled particle deposition: A multiphase journey of inhaled particles. Experimental and Computational Multiphase Flow, 2: 59–78.

    Article  Google Scholar 

  • Inthavong, K., Chetty, A., Shang, Y., Tu, J. 2018. Examining mesh independence for flow dynamics in the human nasal cavity. Computers in Biology and Medicine, 102: 40–50.

    Article  Google Scholar 

  • Inthavong, K., Shang, Y., Wong, E., Singh, N. 2020. Characterization of nasal irrigation flow from a squeeze bottle using computational fluid dynamics. International Forum of Allergy & Rhinology, 10: 29–40.

    Article  Google Scholar 

  • Lee, K. B., Jeon, Y. S., Chung, S. K., Kim, S. K. 2016. Effects of partial middle turbinectomy with varying resection volume and location on nasal functions and airflow characteristics by CFD. Computers in Biology and Medicine, 77: 214–221.

    Article  Google Scholar 

  • Massy-Westropp, N. M., Gill, T. K., Taylor, A. W., Bohannon, R. W., Hill, C. L. 2011. Hand Grip Strength: Age and gender stratified normative data in a population-based study. BMC Research Notes, 4: 127.

    Article  Google Scholar 

  • Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32: 1598–1605.

    Article  Google Scholar 

  • Olson, D. E. L., Rasgon, B. M., Hilsinger, R. L. Jr. 2002. Radiographic comparison of three methods for nasal saline irrigation. The Laryngoscope, 112: 1394–1398.

    Article  Google Scholar 

  • Papsin, B., McTavish, A. 2003. Saline nasal irrigation: Its role as an adjunct treatment. Canadian Family Physician, 49: 168–173.

    Google Scholar 

  • Patki, A., Frank-Ito, D. O. 2016. Characterizing human nasal airflow physiologic variables by nasal index. Respiratory Physiology & Neurobiology, 232: 66–74.

    Article  Google Scholar 

  • Piromchai, P., Puvatanond, C., Kirtsreesakul, V., Chaiyasate, S., Suwanwech, T. 2020. A multicenter survey on the effectiveness of nasal irrigation devices in rhinosinusitis patients. Laryngoscope Investigative Otolaryngology, 5: 1003–1010.

    Article  Google Scholar 

  • Pynnonen, M. A., Mukerji, S. S., Kim, H. M., Adams, M. E., Terrell, J. E. 2007. Nasal saline for chronic sinonasal symptoms. Archives of Otolaryngology-Head & Neck Surgery, 133: 1115.

    Article  Google Scholar 

  • Salati, H., Bartley, J., White, D. E. 2020. Nasal saline irrigation — A review of current anatomical, clinical and computational modelling approaches. Respiratory Physiology & Neurobiology, 273: 103320.

    Article  Google Scholar 

  • Salib, R. J., Talpallikar, S., Uppal, S., Nair, S. B. 2013. A prospective randomised single-blinded clinical trial comparing the efficacy and tolerability of the nasal douching products Sterimar™ and Sinus Rinse™ following functional endoscopic sinus surgery. Clinical Otolaryngology, 38: 297–305.

    Article  Google Scholar 

  • Shrestha, K., Salati, H., Fletcher, D., Singh, N., Inthavong, K. 2021. Effects of head tilt on squeeze-bottle nasal irrigation — A computational fluid dynamics study. Journal of Biomechanics, 123: 110490.

    Article  Google Scholar 

  • Singhal, D., Weitzel, E. K., Lin, E., Feldt, B., Kriete, B., McMains, K. C., Thwin, M., Wormald, P. J. 2010. Effect of head position and surgical dissection on sinus irrigant penetration in cadavers. The Laryngoscope, 120: 2528–2531.

    Article  Google Scholar 

  • Snidvongs, K., Kalish, L., Sacks, R., Sivasubramaniam, R., Cope, D., Harvey, R. J. 2013. Sinus surgery and delivery method influence the effectiveness of topical corticosteroids for chronic rhinosinusitis: Systematic review and meta-analysis. American Journal of Rhinology & Allergy, 27: 221–233.

    Article  Google Scholar 

  • Snidvongs, K., Thanaviratananich, S. 2017. Update on intranasal medications in rhinosinusitis. Current Allergy And Asthma Reports, 17: 47.

    Article  Google Scholar 

  • Succar, E. F., Turner, J. H., Chandra, R. K. 2019. Nasal saline irrigation: A clinical update. International Forum of Allergy & Rhinology, 9: S4–S8.

    Article  Google Scholar 

  • Tong, X., Dong, J., Shang, Y., Inthavong, K., Tu, J. 2016. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity. Computers in Biology and Medicine, 77: 40–48.

    Article  Google Scholar 

  • Van Strien, J., Shrestha, K., Gabriel, S., Lappas, P., Fletcher, D. F., Singh, N., Inthavong, K. 2021. Pressure distribution and flow dynamics in a nasal airway using a scale resolving simulation. Physics of Fluids, 33: 011907.

    Article  Google Scholar 

  • Wong, E., Sansoni, E. R., Do, T. Q. P., Matchett, I., Kalish, L. H., Sacks, R., Harvey, R. J. 2020. Cadaveric assessment of the efficacy of sinus irrigation after staged clearance of the medial maxillary wall. American Journal of Rhinology & Allergy, 34: 290–296.

    Article  Google Scholar 

  • Wormald, P. J., Cain, T., Oates, L., Hawke, L., Wong, I. 2004. A comparative study of three methods of nasal irrigation. The Laryngoscope, 114: 2224–2227.

    Article  Google Scholar 

  • Xi, J., Wang, Z., Si, X. A., Zhou, Y. 2018. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling. European Journal of Pharmaceutical Sciences, 118: 113–123.

    Article  Google Scholar 

  • Zhang, Y., Shang, Y., Inthavong, K., Tong, Z., Sun, B., Zhu, K., Yu, A., Zheng, G. 2019. Computational investigation of dust mite allergens in a realistic human nasal cavity. Inhalation Toxicology, 31: 224–235.

    Article  Google Scholar 

  • Zhao, K., Craig, J. R., Cohen, N. A., Adappa, N. D., Khalili, S., Palmer, J. N. 2016. Sinus irrigations before and after surgery-Visualization through computational fluid dynamics simulations. The Laryngoscope, 126: E90–E96.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by Garnett Passe and Rodney Williams Memorial Foundation Conjoint Grant 2019. Kiao Inthavong is a consultant for ENT Technologies and received a research grant for part of this current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiao Inthavong.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, K., Wong, E., Salati, H. et al. Liquid volume and squeeze force effects on nasal irrigation using Volume of Fluid modelling. Exp. Comput. Multiph. Flow 4, 445–464 (2022). https://doi.org/10.1007/s42757-021-0123-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-021-0123-5

Keywords

Navigation