Skip to main content
Log in

A new fungal entomopathogen has potency as a biocontrol agent of longhorn beetle larva, Osphranteria coerulescencs

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Entomopathogenic fungi (EPFs) are a significant group of insect pathogens that are used as microbial insecticides with distinct physiological mechanisms of pathogenicity. During our survey in the middle of March 2020 to early October 2022 on natural EPF as a biological control agent of the longhorn beetle (LHB) Osphranteria coerulescens, new isolates of EPFs were found on LHB larvae in apple orchards of Dargaz, Razavi Khorasan province, Iran. The nBLAST results of this these indigenous isolate indicated the highest similarity to Cladosporium sp. (Ascomycota: Davidiellaceae) with ON307222.1 access number and for EF-1α indicated the highest similarity to Cladosporium sp. with MH724951.1 access number. To assess the virulence of these indigenous isolates of EPF, a series of tests were conducted on the LHB larvae stages. Conidial concentrations 104, 105, 106, 107, and 108 (conidia/ml− 1) caused (10.21 ± 2.1), (23.44 ± 2.4), (28.72 ± 2.6), (33.23 ± 3.1) and (34.02 ± 2.8) % of mortality in LHB, respectively and there was no significant difference between 108 and 107 (conidia/ml−1) concentrations. The mortality results by the time showed that the process did not start until 3 days after treatment, and after that, it sped up. This research gathers new information about cryptic inhabiting larvae which shows considerable potential for this Cladosporium species to be implemented within the microbial control program of the LHB. This research is a new report isolating the pathogenicity of Cladosporium sp. on LHB. These fungal isolates have considerable potential for the microbiological control of the LHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott W (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267. https://doi.org/10.1093/jee/18.2.265a

    Article  CAS  Google Scholar 

  • Abdel-Baky N (2000) Cladosporium spp. an entomopathogenic fungus for controlling whiteflies and aphids in Egypt. Pakistan J Biol Sci 3:1662–1667 https://doi.org/10.3923/pjbs.2000.1662.1667

    Article  Google Scholar 

  • Abdel-Baky NF, Fadaly HA, EI-Nagar ME, Arafat NS, Abd-Allah RH (2005) Virlence and enzymatic activities of some entomopathogenic fungi against whiteflies and aphids. J Plant Prot Pathol 30(2):1153–1167. https://doi.org/10.21608/jppp.2005.238696

    Article  Google Scholar 

  • Bahar MH, Backhouse D, Gregg PC, Mensah R (2011) Efficacy of a Cladosporium sp. fungus against Helicoverpa armigera (Lepidoptera: Noctuidae), other insect pests and beneficial insects of cotton. Biocontrol Science and Technology 21(12)

  • Becchimanzi A, Zimowska B, Nicoletti R (2021) Cryptic diversity in Cladosporium cladosporioides resulting from sequence-based species delimitation analyses. Pathogens 10(9): 1167

  • Behdad E (1984) Pests of fruit trees in Iran. Isfahan, Neshat press

  • Bensch K, Braun U, Groenewald J, Crous P (2011) The genus Cladosporium. Study Mycol 72:1–401. https://doi.org/10.3114/sim0003

    Article  Google Scholar 

  • Bidochka M, Kasperski J, Wild G (1998) Occurrence of the entomopathogenic fungi Metarhizium anisopliae and Beauveria Bassiana in soils from temperate and nearnorthern habitats. Can J Bot 76:1198–1204. https://doi.org/10.1139/b98-115

    Article  Google Scholar 

  • Campbell C, Johnson E (2013) Identification of pathogenic Fungi. Wiley, Oxford, UK. https://doi.org/10.1002/9781118520055

    Book  Google Scholar 

  • Castrillo L, Ugine T, Filotas M, Sanderson J, Vandenberg J, Wraight S (2008) Molecular characterization and comparative virulence of Beauveria bassiana isolates (Ascomycota: hypocreales) associated with the greenhouse shorefly, Scatella tenuicosta (Diptera: Ephydrididae). Biolgical Control 45:154–162. https://doi.org/10.1016/j.biocontrol.2007.10.010

    Article  CAS  Google Scholar 

  • Clifton EH, Jaronski ST, Hajek AE (2020) Virulence of commercialized fungal entomopathogens against Asian longhorned beetle (Coleoptera: Cerambycidae). J Insect Sci 20(2):1–6. https://doi.org/10.1093/jisesa/ieaa006

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhawan M, Joshi N (2017) Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Brazilian J Microbiol 48(3):522–529. https://doi.org/10.1016/j.bjm.2016.08.004

    Article  CAS  Google Scholar 

  • Donnell OK, Sutton D, Rinaldi M (2009) Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. Equiseti and F. Chlamydosporum species complexes within the United States. J Clin Microbiol 47(12):3851–3861. https://doi.org/10.1128/JCM.01616-09

    Article  CAS  Google Scholar 

  • Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dubois T, Lund J, Bauer L, Hajek A (2008) Virulence of entomopathogenic hypocrealean fungi infecting Anoplophora glabripennis. Biocontrol 53:517–528. https://doi.org/10.1007/s10526-007-9112-2

    Article  Google Scholar 

  • El-Sawy M, Mostafa E, Ismail N (2019) Secondary metabolites of the entomopathogenic fungus, Cladosporium cladosporioides and its relation to toxicity of cotton aphid, Aphis gossypii (Glov). Int J Entomol Nematology 5:115–120

    Google Scholar 

  • Elbanhawy A, Elsherbiny E, El-Mageed AA, Abdel-Fattah G (2019) Potential of fungal metabolites as a biocontrol agent against cotton aphid, Aphis gossypii Glover and the possible mechanisms of action. Pestic Biochem Physiol 159:34–40. https://doi.org/10.1016/j.pestbp.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  • Esmaeili M (1983) Important pests of fruit trees. Tehran, Sepehr Publishing Center

  • Farashiani ME, Askary H, Hoseini E (1998) Laboratory investigation on virulence of three entomopathogenic fungi against the larvae of Aeolesthes sarta (Col.: Cerambycidae). J Entomol Soc Iran 28:19–34

    Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256. https://doi.org/10.1016/j.biocontrol.2007.08.001

    Article  CAS  Google Scholar 

  • Hajek A, Huang B, Dubois T, Smith M, Li Z (2006) Field studies of control of Anoplophora glabripennis (Coleoptera: Cerambycidae) using fiber bands containing the entomopathogenic fungi Metarhizium anisopliae and Beauveria Brongniartii. Biocontrol Sci Technol 16:329–343. https://doi.org/10.1080/09583150500335962

    Article  Google Scholar 

  • Hajek A, Bauer L (2007) Microbial control of wood-boring insects attacking forest and shade trees. Field manual of techniques in invertebrate pathology. L. LA and K. HK, Springer, pp 505–525. Secaucus. https://doi.org/10.1007/978-1-4020-5933-9_24

    Chapter  Google Scholar 

  • Humber R (2012) Identification of entomopathogenic fungi. Manual of techniques in invertebrate pathology. L. LA, Amsterdam, Academic Press, pp 151–186

    Book  Google Scholar 

  • Jiang W, Peng Y, Ye J, Wen Y, Liu G, Xie J (2020) Effects of the entomopathogenic fungus Metarhizium anisopliae on the mortality and Immune Response of Locusta Migratoria. Insect 11(1):1–12. https://doi.org/10.3390/insects11010036

    Article  Google Scholar 

  • Karimi J, Darsouei R, Sharifi S (2017) A Bethylid wasp (Hymenoptera: Bethylidae) as a promising biocontrol agent of Rosaceous long horn beetle Ospheranteria coerulescens (Coleoptera: Cerambycidae). Entomol News 127(2):123–132. https://doi.org/10.3157/021.127.0207

    Article  Google Scholar 

  • Khoury YE, Noujeim E, Ravlić J, Oreste M, Addante R, Nemer N, Tarasco E (2020) The effect of entomopathogenic nematodes and fungi against four xylophagous pests. Biocontrol Sci Technol 30(9):983–995. https://doi.org/10.1080/09583157.2020.1781059

    Article  Google Scholar 

  • Kim J, Kim K (2008) Selection of a highly virulent isolate of Lecanicillium attenuatum against cotton aphid. J Asia Pac Entomol 11:1–4. https://doi.org/10.1016/j.aspen.2008.02.001

    Article  Google Scholar 

  • Kishore PV, Sekhar VC, Bhavani B, Upendhar S (2019) Cladosporium cladosporioides: a new report of parasitism on sugarcane woolly aphid, Ceratovacuna Lanigera Zehntner. J Entomol Zoological Stud 7:1122–1126

    Google Scholar 

  • Kumar C, Jacob T, Devasahayam S, D’Silva S, Kumar N (2015) Isolation and characterization of a Lecanicillium psalliotae isolate infecting cardamom thrips (Sciothrips cardamomi) in India. BioControl 60: 363–373

  • Lacey L, Shapiro-Ilan D (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Ann Rev Entomol 53:121–144. https://doi.org/10.1146/annurev.ento.53.103106.093419

    Article  CAS  Google Scholar 

  • Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://doi.org/10.1016/j.jip.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yu J, Nai Y, Parker B, Skinner M, Kim J (2015) Beauveria bassiana sensu lato granules for management of brown planthopper, Nilaparvata lugens in rice. Biocontrol 60:263–270. https://doi.org/10.1007/s10526-014-9632-5

    Article  Google Scholar 

  • Liu H, Bauer L (2008) Microbial control of emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae) with Beauveria bassiana strain GHA: greenhouse and field trials. Biol Control 45:124–132. https://doi.org/10.1016/j.biocontrol.2007.12.008

    Article  Google Scholar 

  • Mannino MC, Huarte-Bonnet C, Davyt-Colo B, Pedrini N (2019) Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of Entomopathogenic Fungi. J Fungi 5(2):33–43. https://doi.org/10.3390/jof5020033

    Article  CAS  Google Scholar 

  • Meyers J, Stephen F, Haavik L, Steinkraus D (2013) Laboratory and field bioassays on the effects of Beauveria Bassiana Vuillemin (Hypocreales: Cordycipitaceae) on red oak borer, Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae). Biol Control 65:258–264. https://doi.org/10.1016/j.biocontrol.2013.02.001

    Article  Google Scholar 

  • Mnyone LL, Kirby MJ, Lwetoijera DW, Mpingwa MW, Knols BG, Takken W, Russell TL (2009) Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence. Malar J 8(309).

  • Mohammadyani M, Karimi J, Taheri P, Sadeghi H, Zare R (2016) Entomopathogenic fungi as promising biocontrol agents for the rosaceous longhorn beetle, Osphranteria coerulescens. Biocontrol 61:579–590. https://doi.org/10.1007/s10526-016-9745-0

    Article  CAS  Google Scholar 

  • Mousavi K, Rajabpour A, Parizipour MHG, Yarahmadi F (2022) Biological and molecular characterization of Cladosporium sp. and acremonium zeylanicum as biocontrol agents of Aphis fabae in a tri-trophic system. Entomol Exp Appl 170(10):877–886. https://doi.org/10.1111/eea.13217

    Article  CAS  Google Scholar 

  • Narmani A, Arzanlou M, Kazemi F, Karimzadeh R (2016) First report of Cladosporium cladosporioides on Alfalfa weevil larvae (Hyperapostica) in the world. Proceedings of 22th Iranian Plant Protection Congress. Tehran, Iran: 679

  • Ranjbar Aghdam H, Marzban R, Mafi-Pashakolaei S, Sedighi L (2023) Study on the possibility control of box tree moth,Cydalima Perspectalis (Lepidoptera: Crambidae) using microbial, organic and low risk insecticides. J Entomol Soc Iran 43(1):23–29. https://doi.org/10.52547/JESI.43.1.4.

    Article  Google Scholar 

  • Reay S, Hachet C, Nelson T, Brownbridge M, Glare T (2007) Persistence of conidia and potential efficacy of Beauveria bassiana against pinhole borers in New Zealand southern beech forests. For Ecol Manag 246:232–239. https://doi.org/10.1016/j.foreco.2007.04.005

    Article  Google Scholar 

  • Scholthof K (2007) The disease triangle: pathogens, the environment and society. Nat Rev Microbiol 5:152–156. https://doi.org/10.1038/nrmicro1596

    Article  CAS  PubMed  Google Scholar 

  • Shaker N, Ahmed G, Ibrahim H, El-Sawy M, Mostafa M, Ismail H (2019) Secondary metabolites of the entomopathogenic fungus, Cladosporium cladosporioides and its relation to toxicity of cotton aphid, Aphis gossypii (Glov). Int J Entomol Nematology 5:115–120

    Google Scholar 

  • Shanley R, Keena M, Wheeler M, Leland J, Hajek A (2009) Evaluating the virulence and longevity of non-woven fiber bands impregnated with Metarhizium anisopliae against the Asian longhorned beetle, Anoplophora Glabr Ipennis (Coleoptera: Cerambycidae). Biol Control 50:94–102. https://doi.org/10.1016/j.biocontrol.2009.03.013

    Article  Google Scholar 

  • Sharifi S, Javadi I, Chemsak JA (1970) Biology of the Rosaceae branch borer, Osphranteria coerulescens (Coleoptera: Cerambycidae). Ann Entomol Soc Am 63:1515–1520. https://doi.org/10.1093/aesa/63.6.1515

    Article  Google Scholar 

  • Shimazu M, Zhang B, Liu Y (2002) Fungal pathogens of Anoplophora glabripennis (Coleoptera: cerambycidae) and their virulences. Bull Forestry for Prod Res Inst 1:123–130

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanada Y, Kaya H (1993) Insect pathology. Academic, San Diego, CA

    Google Scholar 

  • Thakur A, Singh V, Kaur A, Kaur S (2014) Suppression of cellular immune response in Spodoptera litura (Lepidoptera: Noctuidae) larvae by endophytic fungi Nigrospora oryzae and Cladosporium uredinicola. Ann Entomol Soc Am 107(3):674–679. https://doi.org/10.1603/AN13164

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vries dG (1952) Contribution to the Knowledge of the Genus Cladosporium. PhD Dissertation, Utrecht University

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. PCR protocol, a guide to methods and appliaction. M. Innis, D. Gelfand, J. Sninsky and T. White. San Diego, Academic press: 315–322

  • Yu Y, Cao Y, Xia Y, Liu F (2016) Wright-Giemsa staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum. J Invertebr Pathol 139:19–24. https://doi.org/10.1016/j.jip.2016.06.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Karimi.

Ethics declarations

Conflict of interest

We don’t have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhzadeh, H., Sharifi, S., Eroğlu, G.B. et al. A new fungal entomopathogen has potency as a biocontrol agent of longhorn beetle larva, Osphranteria coerulescencs. Int J Trop Insect Sci (2024). https://doi.org/10.1007/s42690-024-01230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42690-024-01230-8

Keywords

Navigation