Skip to main content
Log in

Efficacy of Cupressus sempervirens essential oils against Trogoderma granarium everts (Coleoptera: Dermestidae)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The seeds and leaves of Cupressus sempervirens essential oils were evaluated against the khapra beetle, Trogoderma granarium at different concentrations. Mortality, repellence activity, adult emergence rate, larvae chemical profile (protein contents and energy reserves), seed germination effect, and grain damage were assessed. The results of phytochemical screening of C. sempervirens leaf and seed demonstrated the presence of saponins, flavonoids, leucoanthocyanins, catechetical tannins, and gallic tannins. We identified eighty-two (82) compounds for leaves and seventy-four (74) for seeds by GC/MS. The major compounds for leaf and seed EOs were α-pinene (33.65% and 26.53%), δ-3-Carene (14.78% and 19.48%) and terpinolene (4.25% and 4.13%), respectively. C. sempervirens exhibited fumigant toxicity and repellent activity as a function the concentrations. C. sempervirens leaves was most potent both in adult emergence (66.94%) and germination rate (99%) compared to seeds oil. Furthermore, the seed and leaf oils significantly reduced seed damage. Finally, the treatments induced an alteration of the biochemical profile via a decrease in energy reserves and protein content. The data obtained suggest that the toxicity of EO by fumigation could be explained by an alteration of insect metabolism via food uptake and digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Tawab HM (2016) Green pesticides: essential oils as biopesticides in insect-pest management. J Environ Sci Technol 9:354–378. https://doi.org/10.3923/jest.2016.354.378

    Article  CAS  Google Scholar 

  • Adedire CO, Ajayi TS (1996) Assessment of insecticidal properties of some plants as grain protectants against the maize weevil, Sitophilus zeamais (Mots). Nig J Entomol 13:93–01

    Google Scholar 

  • Ahmadi E, Khajehali J, Jonckheere W, Van Leeuwen T (2022) Biochemical and insecticidal effects of plant essential oils on insecticide resistant and susceptible populations of Musca domestica L. point to a potential cross-resistance risk. Pest Biochem Physiol 184:105115. https://doi.org/10.1016/j.pestbp.2022.105115

    Article  CAS  Google Scholar 

  • Akermi S, Smaoui S, Elhadef K, Fourati M, Louhichi N, Chaari M, Chakchouk Mtibaa A, Baanannou A, Masmoudi S, Mellouli L (2022) Cupressus sempervirens essential oil: exploring the antibacterial multitarget mechanisms, chemcomputational toxicity prediction, and safety assessment in zebrafish embryos. Molec 27:2630. https://doi.org/10.3390/molecules27092630

    Article  CAS  Google Scholar 

  • Alimi D, Hajri A, Jallouli S, Sebai H (2022) Phytochemistry, anti-tick, repellency and anti-cholinesterase activities of Cupressus sempervirens L. and Mentha pulegium L. combinations against Hyalomma scupense (Acari: Ixodidae). Vet Parasitol 303:109665. https://doi.org/10.1016/j.vetpar.2022.109665

  • Almadiy AA, Nenaah GE, Albogami BZ, Shawer DM, Alasmari S (2023) Cupressus sempervirens essential oil, nanoemulsion, and major terpenes as sustainable green pesticides against the Rice Weevil. Sustainability 15:8021. https://doi.org/10.3390/su15108021

    Article  CAS  Google Scholar 

  • Amara N, Bougherara Y (2017) Activité antimicrobienne de l’huile essentielle du Cyprès vert (Cupressus sempervirens L). Alger J Natur Prod 5(2):455–462

    Google Scholar 

  • Arannilewa ST, Ekrakene T, Akinneye JO (2006) Laboratory evaluation of four medicinal plants as protectants against the maize weevil, Sitophilus zeamais Mots. Afri J Biotechn 5:2032–2036

    Google Scholar 

  • Athanassiou GC, Thomas WP, Wakas W (2019) Biology and control of the khapra beetle, Trogoderma granarium, a major pest to global food security. Ann Rev Entomol 64:131–148. https://doi.org/10.1146/annurev-ento-011118-111804

    Article  CAS  Google Scholar 

  • Bernard P, Susplugas P, Balansard G, Lallemand M (1978) Rapid separation of diterpenic acids contained in cores of Cypressus Sempervirens L. by means of preparative liquid chromatography. Plantes Médicinales et Phytotherapie 12:137–143

    CAS  Google Scholar 

  • Boukhris M, Regane G, Yangui T, Sayadi S, Bouaziz M (2013) Chemical composition and biological potential of essential oil from Tunisian Cupressus sempervirens L. J Arid Land Stud 22(1):329–332

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • British pharmacopoeia (1988) London: HMSO 2: A137–A138

  • Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21:23–46. https://doi.org/10.1146/annurev.nutr.21.1.23

    Article  CAS  PubMed  Google Scholar 

  • Costa OB, Del Menezzi CHS, Benedito LEC, Resck IS, Vieira RF, Bizzo HR (2014) Essential oil constituents and yields from leaves of Blepharocalyx Salicifolius (Kunt) O. Berg and Myracrodruon Urundeuva (Allemão) collected during daytime. Inter J for Res 3:1–6. https://doi.org/10.1155/2014/982576

    Article  Google Scholar 

  • Dillon K (1968) Report on visit to USA and Canada by Mr. K. Dillon, Plant Quarantine Entomologist, to investigate all aspects of Khapra Beetle Trogoderma granarium. Plant Quar. Branch, Canberra, Aust.

    Google Scholar 

  • Drapeau J, Frohler C, Touraud D, Krockel U, Geier M, Rose A, Kunz W (2009) Repellent studies with Aedes aegypti mosquitoes and human olfactory tests on 19 essential oils from Corsica, France. Flav Frag J 24:160–169. https://doi.org/10.1002/ffj.1928

    Article  CAS  Google Scholar 

  • Duchateau G, Florkin M (1959) Sur La tréhalosémie Des Insectes et sa signification. Arch Inter Physiol Bioch 67(2):306–314

    CAS  Google Scholar 

  • Emami SA, Hassanzadeh MK, Rahimizadeh M, Fazli BS, Assili J (2004) Chemical constituants of Cupressus sempervirens L. Cv cereiforms Rehd essential oil Iranian. J Pharm Sci 1:39–42

    Google Scholar 

  • EPPO, Eur. Mediterr. Plant Prot. Org (2013) PM 7/13 (2) Trogoderma granarium. EPPO Bull 43:431–448

  • Francikowski J, Baran B, Cup M, Janiec J, Krzyzowski M (2019) Commercially available essential oil formulas as repellents against the stored-product pest Alphitobius diaperinus. Insects 10:96. https://doi.org/10.3390/insects10040096

    Article  PubMed  PubMed Central  Google Scholar 

  • Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res 112:1113–1123. https://doi.org/10.1007/s00436-012-3239-5

    Article  PubMed  Google Scholar 

  • Gnanamani R, Dhanasekaran S (2017) Efficacy of Azadirachta indica leaf extract on the biochemical estimation of a Lepidopteran pest Perica Lliaricini (Lepidoptera: Arctiidae). W Appl Sci J 35(2):177–181. https://doi.org/10.5829/idosi.wasj.2017.177.181

    Article  CAS  Google Scholar 

  • Goldsworthy GJ, Mordue W, Guthkelch J (1972) Studies on insect adipokinetic hormones. Gen Comp Endocrinol 18(3):545–551

    Article  CAS  PubMed  Google Scholar 

  • Govindan K, Jeyarajan NS (2008) Effect of ten plant powders on mortality, oviposition, adult emergence and seed weight loss on pulse beetle, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Hexapoda 15:64–66

    Google Scholar 

  • Guettal S, Tine S, Tine-Djebbar F, Soltani N (2020a) Evaluation of Citrus limonum (Sapindales: Rutaceae) L. essential oil as protectant against the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Allel J 51(1):79–92. https://doi.org/10.26651/allelo.j/2020-51-1-1292

    Article  Google Scholar 

  • Guettal S, Tine S, Tine-Djebbar F, Soltani N (2020b) Effect of Citrus limonum essential oil against granary weevil, Sitophilus granarius and its chemical composition, biological activities and energy reserves. Int J Trop Insect Sci 41:1531–1541. https://doi.org/10.1007/s42690-020-00353-y

    Article  Google Scholar 

  • Guettal S, Tine S, Kaouther H, Tine-Djebbar F, Soltani N (2021) Combined effects of Azadirachtin and Citrus limonum essential oil against Sitophilus granarius: toxicity and Biological activities. Pest Res J 33(1):78–86. https://doi.org/10.5958/2249-524X.2021.00023.6

    Article  Google Scholar 

  • Habibi-Ghozloo F, Moarefi M, Rafiei Karahroodi Z (2012) Fumigant toxicity and repellency effect of essential oils of Pinus eldarica and Cupressus arizonica on adults of flour moth, Ephestia kuehniella Zeller. (Lep., Pyralidae). J Entomol Res 4 (3):215–225

  • Harborne JB (1998) Phytochemical methods. Chapman and Hall, London

    Google Scholar 

  • Huang Y, Lam SL, Ho SH (2000) Bioactivities of essential oil from Elletaria Cardamomum (L.) Maton. To Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J Stored Prod Res 36(2):107–117. https://doi.org/10.1016/S0022-474X(99)00040-5

    Article  CAS  Google Scholar 

  • Ibrahim NA, El-Seedi HR, Mohammed MMD (2007) Phytochemical investigation and hepatoprotective activity of Cupressus sempervirens L. leaves growing in Egypt. Nat Prod Res 21:857–866. https://doi.org/10.1080/14786410601132477

    Article  CAS  PubMed  Google Scholar 

  • ISTA, International Seed Testing Association (1985) International rules for seed testing. Seed Sci Technol 13:307–520

  • Jonadet M, Meunier MT, Villie F, Bastide J, Bastide P (1984) Catechins and flavanolic oligomers from Cupressus sempervirens L. Comparative in vitro elastase inhibitory and in vivo angioprotective activity. Ann Pharm Fr 42:161–167

    CAS  PubMed  Google Scholar 

  • Jood S, Kapoor AC, Singh R (1993) Biological evaluation of protein quality of sorghum as affected by insect infestation. Plant Foods Hum Nutr 43:105–114

    Article  CAS  PubMed  Google Scholar 

  • Jumbo LOV, Faroni LRA, Oliveiraa EE, Pimentel MA, Silva GN (2014) Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus say, in small storage units. Ind Crops Prod 56:27–34. https://doi.org/10.1016/j.indcrop.2014.02.038

    Article  CAS  Google Scholar 

  • Karabörklü S, Ayvaz A (2023) A comprehensive review of effective essential oil components in stored–product pest management. J Plant Dis Prot. https://doi.org/10.1007/s41348-023-00712-0

    Article  Google Scholar 

  • Kraus S, Monchanin C, Gomez-Moracho T, Lihoreau M (2019) Insect Diet. Jennifer Vonk; Todd Shackelford. Encyclopedia of Animal Cognition and Behavior, pp 1–9

  • Kumar L, Verma SC, Sharma PL (2017) Studies on effect of essential oils on quality characters of pea seeds (Pisum sativum L.) damaged by Callosobruchus chinensis L. (Coleoptera: Bruchidae). J Entomol Zool Stud 5(6):562–565

    Google Scholar 

  • Labbafi M, Ahvazi M, Khalighi-Sigaroodi F, Khalaj H, Ahmadian S, Tajabadi F, Khani M, Amini S (2021) Essential oil bioactivity evaluation of the different populations of Cupressus against adult rice weevil (Sitophilus oryzae L). J Med Plants 20(77):79–92

    Article  Google Scholar 

  • Landolt PJ, Hofstetter RW, Biddick LL (1999) Plant essential oils as arrestants and repellents for neonate larvae of the codling moth (Lepidoptera: Tortricidae). Environ Entomol 28:954–960

    Article  CAS  Google Scholar 

  • Langsi DJ, Tofel HK, Fokunang CN, Suh C, Eloh K, Caboni P, Nukenine EN (2018) Insecticidal activity of essential oils of Chenopodium ambrosioides and Cupressus sempervirens and their binary combinations on Sitophilus zeamais. GSC Biol Pharm Sci 3(2):24–34. https://doi.org/10.30574/gscbps.2018.3.2.0032

    Article  CAS  Google Scholar 

  • Lee SE, Lee BH, Choi WS, Park BS, Kim JG, Campbell BC (2001) Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophylus oryzae (L). Pest Manag Sci 57:548–553. https://doi.org/10.1002/ps.322

    Article  CAS  PubMed  Google Scholar 

  • Lindgren DL, Vincent LE, Krohne HE (1955) The khapra beetle, Trogoderma granarium Everts. Hilgardia 24:1–36

    Article  Google Scholar 

  • Lolage GR, Patil RB (1992) Comparative efficacy of plant oils against Callosobruchus maculatus F. on pigeon pea. J Maharashtra Agr Univ 16(3):327–329

    Google Scholar 

  • Ma S, Jia R, Guo M, Qin K, Zhang L (2020) Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind Crop Prod 150:112403. https://doi.org/10.1016/j.indcrop.2020.112403

    Article  CAS  Google Scholar 

  • Mantzoukas S, Korbou G, Magita A, Eliopoulos PA, Poulas K (2020) Leguminous seeds powder diet reduces the survival and development of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Biology 9:204. https://doi.org/10.3390/biology9080204

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazari K, Bendimerad N, Bekhechi C (2010) Chemical composition and antimicrobial activity of essential oils isolated from Algerian Juniperus phoenicea L. and Cupressus sempervirens L. J Med Plants Res 4(10):959–964. https://doi.org/10.5897/JMPR10.169

    Article  CAS  Google Scholar 

  • Mc Donald LL, Guy RH, Speirs RD (1970) Preliminary evaluation of new candidate materials as toxicants, repellents, and attractants against stored-product insects. USDA Mark Res Rep 882

  • Mishra BB, Tripathi SP, Tripathi CPM (2012) Repellent effect of leaves essential oils from Eucalyptus globulus (Mirtaceae) and Ocimum basilicum (Lamiaceae) against two major stored grain insect pests of coleopterons. Nat Sci 10(2):50–54

    Google Scholar 

  • Naeem A (2016) Biochemical response in phosphine resistant and susceptible adult beetles of Trogoderma granarium to the sublethal dose. J Entomol Zool Stud 4(6):582–587

    Google Scholar 

  • Nurulain S, Prytkova T, Sultan AM, Ievglevskyi O, Lorke D, Yang KH, Petroianu G, Howarth FC, Kabbani N, Oz M (2015) Inhibitory actions of bisabolol on α7-nicotinic acetylcholine receptors. Neuroscience 306:91–99. https://doi.org/10.1016/j.neuroscience.2015.08.019

    Article  CAS  PubMed  Google Scholar 

  • Nzelu CO, Okonkwo NJ (2016) Evaluation of melon seed oil Citrullus colocynthis (L.) Schrad, for the protection of cowpea Vigna unguiculata seeds against Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae). Int Adv Res J Sci Eng Technol 3(8):1–10. https://doi.org/10.17148/IARJSET.2016.3813

    Article  Google Scholar 

  • Obeng-Ofori D, Reichmuth CH, Bekele J, Hassanali A (1997) Biological activity of 1,8-cineole, a major component of essential oil of Ocimum kenyense (Ayobangira) against stored product beetles. J Appl Entomol 121:237–243

    Article  CAS  Google Scholar 

  • OEPP/EPPO (1981) Data sheets on quarantine organisms, Trogoderma granarium. Bulletin 121:1–6

  • Piovetti L, Francisco C, Pauly G, Benchabane O, Bernard-Dagan C, Diara A (1981) Volatile constituents of Cupressus dupreziana and the sesquiterpenes of Cupressus sempervirens. Phytochemistry 20:1299–1302

    Article  CAS  Google Scholar 

  • Pour SA, Shahriari M, Zibaee A, Mojarab-Mahboubkar M, Sahebzadeh N, Hoda H (2022) Toxicity, antifeedant and physiological effects of trans-anethole against Hyphantria cunea Drury (Lep: Arctiidae). Pestic Biochem Physiol 185:105135

    Article  CAS  PubMed  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a highstakes world. Ann Rev Entomol 57:405–424. https://doi.org/10.1146/annurev-ento-120710-100554

    Article  CAS  Google Scholar 

  • Romani A, Galardi C, Pinelli P, Mulinacci N, Heimler D (2002) HPLC quantification of flavonoids and biflavonoids in Cupressaceae leaves. Chromatographia 56:469–474. https://doi.org/10.1007/BF02492011

    Article  CAS  Google Scholar 

  • Sahaf BZ, Moharramipour S, Meshkatalsadat MH (2008) Fumigant toxicity of essential oil from Vitex pseudo-negundo against Tribolium castaneum (Herbst) and Sitophilus oryzae (L). J Asia Pac Entomol 11:175–179. https://doi.org/10.1016/j.aspen.2008.09.001

    Article  Google Scholar 

  • Salunkhe DK, Chavan JK, Kadam SS (1985) Postharvest Biotechnology of Cereals. CRC, Boca Rato, FL

    Google Scholar 

  • Santos NKA, Rodrigues FFG, Coutinho HDM, Viana GSB, Costa JGM (2013) Isolation of alpha-bisabolol from the essential oil of Vanillosmopsis Arborea baker and modulation of antibiotic activity using gaseous contact. J Essent Oil Bear Plants 16:826–831. https://doi.org/10.1080/0972060X.2013.794044

    Article  CAS  Google Scholar 

  • Sarwar M, Ahmad N, Toufiq M (2009) Host plant resistance relation shiphs in chickpea (Cicer arietinum L.) against gram pod borer (Helicoverpa Armigera Hubner). Pak J Bot 41:3047–3052

    Google Scholar 

  • Sayada N, Tine S, Soltani N (2021) Toxicity and physiological effects of essential oil from Lavandula angustifolia (M.) against Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) adults. J Entomol Res 45(suppl):929–936. https://doi.org/10.5958/0974-4576.2021.00144.4

    Article  Google Scholar 

  • Sayada N, Tine S, Tine-Djebbar F, Soltani N (2022) Evaluation of a botanical insecticide as toxicant, repellent and antifeedant against a stored product pest Rhyzopertha dominica (F). Appl Ecol Envir Res 20(2):1301–1324. https://doi.org/10.15666/aeer/2002_13011324

    Article  Google Scholar 

  • Seenivasan SP, Jayakumar M, Raja N, Ignacimuthu S (2004) Efficacy of bitter apple (Citrullus colocynthis) seed extracts against pulse beetle. Callosobruchus maculatus Fab (Coleoptera: Bruchidae) Entomol 29:81–84

    Google Scholar 

  • Selim SA, Adam ME, Hassan SM, Albalawi AR (2014) Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L). BMC Compl Alt Med 14:179. https://doi.org/10.1186/1472-6882-14-179

    Article  CAS  Google Scholar 

  • Shah S, Hafeez M, Wu MY, Zhang SS, Ilyas M, Wu G, Yang FL (2020) Downregulation of chitin synthase A gene by diallyl trisulfide an active substance from garlic essential oil inhibits oviposition and alters the morphology of adult Sitotroga cerealella. J Pest Sci 93(3):1097–1106. https://link.springer.com/article/https://doi.org/10.1007/s10340-020-01226-6

    Article  Google Scholar 

  • Shahriari M, Sahebzadeh N, Zibaee A (2017) Effect of Teucrium Polium (Lamiaceae) essential oil on digestive enzyme activities and energy reserves of Ephestia Kuehniella (Lepidoptera: Pyralidae). Inv Surv J 14:182–189

    Google Scholar 

  • Sharma P, Mohan L, Dua KK, Srivastava CN (2011) Status of carbohydrate, protein and lipid profile in the mosquito larvae treated with certain phytoextracts. Asian Pac J Trop Med 4(4):301–304. https://doi.org/10.1016/s1995-7645(11)60090-4

    Article  PubMed  Google Scholar 

  • Shibko S, Koivistoinen P, Tratyneck C, Newhall A, Freidman L (1966) A method for the sequential quantitative separation and glycogen from a single rat liver homogenate or from a subcellular fraction. Anal Biochem 19:415–428

  • Soe TN, Ngampongsai A, Sittichaya W (2020) Bioactivity of some plant essential oils for seed treatment against pulse beetle, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) on mung bean. Bulg J Agr Sci 26(1):141–147

    Google Scholar 

  • Su HCF (1991) Laboratory evaluation of toxicity of Acorus calamus oil against four species of stored product insects. J Entomol Sci 26(1):76–80

    Google Scholar 

  • Tapondjou AL, Adler CFDA, Fontem DA, Bouda H, Reichmuth CH (2005) Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. J Stored Prod Res 41(1):91–102. https://doi.org/10.1016/j.jspr.2004.01.004

    Article  CAS  Google Scholar 

  • Tine S, Brahmi A, Yousfi R (2021a) Lutte contre les ravageurs des stocks. Noor Publishing. ISBN: 978-620-3-85842-6

  • Tine S, Soltani M, Abess N (2021b) Utilisation des huiles essentielles dans la lutte contre les insectes des denrées stockées. Editions Universitaires Européennes. ISBN: 978-620-3-42165-1

  • Tine S, Sayada N, Tine-Djebbar F, Soltani N (2021c) Chemical composition and activity of Lavandula angustifolia essential oil against stored-product pest Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae): fumigant toxicity, food intake and digestive enzymes. Environmental Science and Engineering. Mohamed Ksibi (Eds): Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (2nd Edition), https://doi.org/10.1007/978-3-030-51210-1_238

  • Tine S, Tine-Djebbar F, Debab A, Mesloub A, Soltani N (2023) Insecticidal efficacy and physiological effects of Eucalyptus globulus essential oil and its constituent, 1,8–Cineole against Tribolium confusum (Jacquelin Du Val, 1868) (Coleoptera, Tenebrionidae). J Plant Dis Prot 130:769–780. https://doi.org/10.1007/s41348-023-00766-0

    Article  CAS  Google Scholar 

  • Tine-Djebbar F, Trad M, Tine AO, Tine S, Soltani N (2023) Effects of menthol on nutritional physiology and enzyme activities of the lesser grain borer, Rhyzopertha dominica (F. 1792) (Coleoptera: Bostrichidae). J Plant Dis Prot 130:509–518. https://doi.org/10.1007/s41348-023-00727-7

    Article  CAS  Google Scholar 

  • Tognolini M, Barocelli E, Ballabeni V, Bruni R, Bianchi A, Chiavarini M, Impicciatore M (2006) Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Life Sci 78:1419–1432. https://doi.org/10.1016/j.lfs.2005.07.020

    Article  CAS  PubMed  Google Scholar 

  • Tufail N, Saleem MA, Shakoori AR (1994) Biochemical changes in sixth instar larvae of Pak and FSS-II strain of red flour beetle Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae) following administration of sublethal doses of a synthetic pyrethroid, bifenthrin. Pakistan J Zool 26:197–206

    CAS  Google Scholar 

  • Vennat B, Gross D, Pourrat A, Pourrat H (1991) Polyphenols from Cupressus sempervirens: qualitative and quantitative assays of proanthocyanidins and flavonoids. Farmacology 46:685–698

    CAS  Google Scholar 

  • Yazdani E, Sendi JJ, Aliakbar A, Senthil-Nathan S (2013) Effect of Lavandula angustifolia essential oil against lesser mulberry pyralid Glyphodes Pyloalis Walker (Lep: Pyralidae) and identification of its major derivatives. Pest Biochem Physiol 107(2):250–257. https://doi.org/10.1016/j.pestbp.2013.08.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Ministry of High Education and Scientific Research of Algeria (PRFU Project to Pr. F. Tine-Djebbar) and the National Fund for Scientific Research to Pr. N. Soltani (Laboratory of Applied Animal Biology, Badji Mokhtar University, Annaba) supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouzia Tine-Djebbar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkader, M., Tine, S., Tine-Djebbar, F. et al. Efficacy of Cupressus sempervirens essential oils against Trogoderma granarium everts (Coleoptera: Dermestidae). Int J Trop Insect Sci (2024). https://doi.org/10.1007/s42690-024-01204-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42690-024-01204-w

Keywords

Navigation