Skip to main content
Log in

Virulence analysis of novel Beauveria bassiana strains isolated from three different climatic zones against Locusta migratoria

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Biological control using entomopathogenic fungi is a promising alternative to the chemical control of locusts. The current study collected many trains of Beauveria bassiana and tested their suitablility for migratory locust management. Twenty fungal stains were isolated from the soil (collected from three different climatic zones in China) using the Galleria mellonella bait protocol. The phylogenetic analysis of the collected fungal strains based on ITS1 and ITS4 sequences revealed that they all belonged to B. bassiana. The results of pathogenicity testing against the third nymphal instar of Locusta migratoria showed that eight strains were highly pathogenic, causing 100% mortality within 10 days of treatment. The LC50 values of the strains B. bassiana BJ (BbBJ), B. bassiana ZJ1(BbZJ1), and B. bassiana HN1 (BbHN1) were 2.27 × 105, 0.16 × 105 and 1.02 × 105 conidia/mL, respectively indicating the lowest LC50 values for strains collected from Beijing, Zhejiang, and Hainan, respectively. The LT50 values for fourth and fifth instar larvae and the horizontal transmission ability of strain BbZJ1 were 4.62 days, 8.69 days and 91.7% respectively proving to be the best among the three selected strains. In addition, analysis of virulence factors of the three regionally best strains showed that BbZJ1 had the highest germination rate, fastest growth (by 7.06 mm day−1), produced the most conidia (16.03 × 106 conidia mm−2), had higher protease activity, and a hydrophobicity value of 97.31%. BbZJ1 strain has an excellent pathogenicity against local migratory locust, and has the potential for developing fungal biopesticide for controlling local locusts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott W (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Almeida JEM, Alves SB, Pereira RM (2009) Selection of Beauveria spp. isolates for control of the termite Heterotermes tenuis (Hagen, 1858). J Appl Entomol 121(1–5):539–543

    Google Scholar 

  • Álvarez SP, Guerrero AM, Duarte BND, Tapia MAM, Medina JAC, Rodríguez YD (2018) First report of a new isolate of Metarhizium rileyi from maize fields of Quivicán, Cuba. Indian J Microbiol 58(2):222–226

    Article  Google Scholar 

  • Ayala-Zermeño MA, Gallou A, Berlanga-Padilla AM, Serna-Domínguez MG, Arredondo-Bernal HC, Montesinos-Matías R (2015) Characterisation of entomopathogenic fungi used in the biological control programme of Diaphorina citri in Mexico. Biocontrol Sci Tech 25(10):1192–1207

    Article  Google Scholar 

  • Bidochka MJ, Small CLN, Spironello M (2005) Recombination within sympatric cryptic species of the insect pathogenic fungus Metarhizium anisopliae. Environ Microbiol 7(9):1361–1368

    Article  CAS  Google Scholar 

  • Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA (2016) Entomopathogenic fungi: New insights into host-pathogen interactions. Adv Genet 94:307–364

    Article  CAS  Google Scholar 

  • Castrejón-Antonio JE, Tamez-Guerra P, Montesinos-Matías R, Ek-Ramos MJ, Garza-López PM, Arredondo-Bernal HC (2020) Selection of Beauveria bassiana (Hypocreales: Cordycipitaceae) strains to control Xyleborus affinis (Curculionidae: Scolytinae) females. PeerJ 8:e9472

    Article  Google Scholar 

  • Dembilio O, Quesada-Moraga E, Santiago-Alvarez C, Jacas JA (2010) Potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana as a biological control agent against the Red Palm Weevil, Rhynchophorus ferrugineus. J Invertebr Pathol 104(3):214–221

    Article  Google Scholar 

  • Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, Leger RJ, Pei Y (2009) Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol 102:155–159

    Article  CAS  Google Scholar 

  • Fu X, Hunter DM, Shi WP (2010) Effect of Paranosema (Nosema) locustae (Microsporidia) on morphological phase transformation of Locusta migratoria manilensis (Orthoptera: Acrididae). Biocontrol Sci Tech 20(7):683–693

    Article  Google Scholar 

  • Gürlek S, Sevim A, Sezgin FM, Sevim E (2018) Isolation and characterization of Beauveria and Metarhizium spp. from walnut fields and their pathogenicity against the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Egypt J Biol Pest Control. 28(1):50

    Article  Google Scholar 

  • Jaber S, Mercier A, Knio K, Brun S, Kambris Z (2016) Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Parasit Vectors 9:491

    Article  Google Scholar 

  • Kim JS, Skinner M, Hata T, Parker BL (2010) Effects of culture media on hydrophobicity and thermotolerance of B. bassiana and Metarhizium anisopliae conidia, with description of a novel surfactant-based hydrophobicity assay. J Invertebr Pathol 105(3):322–328

    Article  Google Scholar 

  • Latchininsky AV (2013) Locusts and remote sensing: a review. J Appl Remote Sens 7(1):075099

    Article  Google Scholar 

  • Mar TT, Suwannarach N, Lumyong S (2012) Isolation of entomopathogenic fungi from Northern Thailand and their production in cereal grains. World J Microbiol Biotechnol 28(12):3281–3291

    Article  Google Scholar 

  • Mascarin GM, Eliane DQ, Italo D, Nilce NK (2013) The virulence of entomopathogenic fungi against Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and their conidial production using solid substrate fermentation. Biol Control 66(3):209–218

    Article  Google Scholar 

  • Meyling NV, Eilenberg J (2006) Isolation and characterisation of Beauveria bassiana isolates from phylloplanes of hedgerow vegetation. Mycol Res 110(2):188–195

    Article  CAS  Google Scholar 

  • Millist N, Abdalla A (2011) Benefit-cost analysis of Australian plague locust control operations for 2010–11. ABARES report prepared for the Australian Plague Locust Commission

  • Montesinos-Matías R, Viniegra-González G, Alatorre-Rosas R, Loera O (2011) Relationship between virulence and enzymatic profiles in the cuticle of Tenebrio molitor by 2-deoxy-D-glucose-resistant mutants of Beauveria bassiana (Bals.) Vuill. World J Microbiol Biotechnol 27(9):2095–2102

    Article  Google Scholar 

  • Nishi O, Sato H (2018) Isolation of Metarhizium spp. from rhizosphere soils of wild plants reflects fungal diversity in soil but not plant specificity. Mycology 10(1):22–31

    Article  Google Scholar 

  • Pelizza SA, Mariottini Y, Russo LM, Vianna FM, Scorsetti AC, Lange CE (2019) Application of Beauveria bassiana using different baits for the control of grasshopper pest Dichroplus maculipennis under field cage conditions. J King Saud Univ Sci 31(4):1511–1515

    Article  Google Scholar 

  • Pelizza SA, Medina H, Ferreri NA, Elíades LA, Pocco ME, Stenglein SA, Lange CE (2020) Virulence and enzymatic activity of three new isolates of Beauveria bassiana (Ascomycota: Hypocreales) from the South American locust Schistocerca cancellata (Orthoptera: Acrididae). J King Saud Univ Sci 32(1):44–47

    Article  Google Scholar 

  • Pérez-González VH, Guzmán-Franco AW, Alatorre-Rosas R, Hernández-López J, Hernández-López A, Carrillo-Benítez MG, Baverstock J (2014) Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils. J Invertebr Pathol 119:54–61

    Article  Google Scholar 

  • Petlamul W, Prasertsan P (2012) Evaluation of strains of Metarhizium anisopliae and Beauveria bassiana against Spodoptera litura on the basis of their virulence, germination rate, conidia production, radial growth and enzyme activity. Mycobiology 40(2):111–116

    Article  CAS  Google Scholar 

  • Quesada-Moraga E, Vey A (2003) Intra-specific variation in virulence and in vitro production of macromolecular toxins active against locust among Beauveria bassiana Strains and effects of in vivo and in vitro passage on these factors. Biocontrol Sci Tech 13(3):323–340

    Article  Google Scholar 

  • Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108(4):441–452

    Article  CAS  Google Scholar 

  • Ravensberg WJ (2011) Selection of a microbial pest control agent. In: Ravensberg WJ (ed) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Springer Science & Business Media, Germany, pp 23–57

    Chapter  Google Scholar 

  • Safavi SA, Shah FA, Pakdel AK, Reza Rasoulian G, Bandani AR, Butt TM (2007) Effect of nutrition on growth and virulence of the entomopathogenic fungus Beauveria bassiana. FEMS Microbiol Lett 270(1):116–123

    Article  CAS  Google Scholar 

  • Sangbaramou R, Camara I, Huang XZ, Shen J, Tan SQ, Shi WP (2018) Behavioral thermoregulation in Locusta migratoria manilensis (Orthoptera: Acrididae) in response to the entomopathogenic fungus Beauveria bassiana. PLoS ONE 13(11):e0206816

    Article  Google Scholar 

  • Shi WP, Zheng X, Jia WT, Li AM, Camara I, Chen HX, Tan SQ, Liu YQ, Ji R (2018) Horizontal transmission of Paranosema locustae (Microsporidia) in grasshopper populations via predatory natural enemies. Pest Manag Sci 74(11):2589–2593

    Article  CAS  Google Scholar 

  • Shin TY, Bae S, Kim DJ, Yun HG, Woo SD (2017) Evaluation of virulence, tolerance to environmental factors and antimicrobial activities of entomopathogenic fungi against two-spotted spider mite Tetranychus urticae. Mycoscience 58(3):204–212

    Article  Google Scholar 

  • Srei N, Lavallée R, Guertin C (2019) Horizontal transmission of the entomopathogenic fungal isolate INRS-242 of Beauveria bassiana (Hypocreales: Cordycipitaceae) in Emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). J Econ Entomol 133(1):543–545

    Google Scholar 

  • Svedese VM, Lima EÁLA, Porto ALF (2013) Horizontal transmission and effect of the temperature in pathogenicity of Beauveria bassiana against Diatraea saccharalis (Lepidoptera: Crambidae). Braz Arch Biol Technol 56(3):413–419

    Article  Google Scholar 

  • Tan SQ, Yin Y, Cao KL, Zhao XX, Wang XY, Zhang YX, Shi WP (2021) Effects of a combined infection with Paranosema locustae and Beauveria bassiana on Locusta migratoria and its gut microflora. Insect Sci 28(2):347–354

    Article  CAS  Google Scholar 

  • Wang H, Peng H, Li W, Cheng P, Gong M (2021a) The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Front Microbiol 12:705343

    Article  Google Scholar 

  • Wang Y, Cui CL, Wang GD, Li YF, Wang SB (2021b) Insects defend against fungal infection by employing microRNAs to silence virulence-related genes. Proc Natl Acad Sci USA 118(19):e2023802118

    Article  CAS  Google Scholar 

  • Woodring JL, Kaya HK (1988) Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques Arkansas Agricultural Experiment Station, Fayetteville, Arkansas

  • Wraight SP, Inglis GD, Goettel MS (2007) Fungi. In: Lacey LA, Kaya HK (eds) Field Manual of Techniques in Invertebrate Pathology. Springer, Germany, pp 223–248

    Chapter  Google Scholar 

  • Zhang L, Hunter DM (2017) Management of locusts and grasshoppers in China. J Orthoptera Res 26(2):155–159

    Article  Google Scholar 

  • Zhang L, Lecoq M (2021) Nosema locustae (Protozoa, Microsporidia), a biological agent for locust and grasshopper control. Agronomy 11(4):711

    Article  Google Scholar 

  • Zhang L, Yan Y, Wang G, Pan J, Yang Z (1995) A preliminary survey on the epizootics of infection of Nosema locust among grasshoppers in rangeland. Acta Agrestia Sinica 3:223–229

    CAS  Google Scholar 

  • Zhang S, Xia YX, Kim B, Keyhani NO (2011) Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus Beauveria bassiana. Mol Microbiol 80(3):811–826

    Article  CAS  Google Scholar 

  • Zhu J, Ying SH, Feng MG (2016) The Pal pathway required for ambient pH adaptation regulates growth, conidiation, and osmotolerance of Beauveria bassiana in a pH-dependent manner. Appl Microbiol Biotechnol 100(10):4423–4433

    Article  CAS  Google Scholar 

Download references

Funding

The research was funded by the National Natural Science Foundation of China (32102191), National Natural Science Foundation of China (31772221) and the National Key Research and Development Program of China (2017YFD0201200).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S. T. and W. S.; methodology, I. C, K. C., R. S., and C. C.; formal analysis, S. T. and I. C.; investigation, I. C., Y. S., X. Z. and Y. X.; resources, S. T. and W. S.; data curation, W. S.; writing—original draft preparation, I. C. and W. S.; visualization, S. T.; supervision, W. S., C. C., and S. T.; project administration, W. S.; funding acquisition, W. S. and S. T. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shuqian Tan.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camara, I., Cao, K., Sangbaramou, R. et al. Virulence analysis of novel Beauveria bassiana strains isolated from three different climatic zones against Locusta migratoria. Int J Trop Insect Sci 42, 2877–2886 (2022). https://doi.org/10.1007/s42690-022-00812-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-022-00812-8

Keywords

Navigation