Skip to main content
Log in

Recursive partitioning to prioritize morphometric traits that separate Aspen specialist Chaitophorus aphid by species and stage

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Arthropod herbivore assemblages are used to gain insight into questions about evolution, ecology, diversity, and conservation. However, determination at the species level of small arthropods may be challenging risking underestimating diversity. Here we suggest morphometric analyses as a supplementary determination method, and we demonstrate its use for a study of Chaitophorus species collected from Aspen trees (Populus tremula). Although sampled as one colony, the aphids represented three species. Rearing the species separately allowed us to get estimates characteristic of the developmental stages from each of the three species for morphometric comparisons. Recursive partitioning (RP) was used to create a decision tree for choice of morphometric parameters that with significance (p < 0.05) could determine the aphids by species and developmental stage; this insight could then be used as a key for determination. Eight of fifteen morphometric traits were selected by RP to be used in the key. Body length was responsible for nine splits and was consequently the more consistent morphometric trait used in the key.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdala-Roberts L, Puentes A, Finke DL, Marquis RJ, Montserrat M, Poelman EH, Rasmann S, Sentis A, Dam N, Wimp G, Mooney K, Björkman C (2019) Tri-trophic interactions: bridging species, communities and ecosystems. Ecol Let 22(12):2151–2167. https://doi.org/10.1111/ele.13392

    Article  Google Scholar 

  • Alba JM, Glas JJ, Schimmel BCJ, Kant MR (2011) Avoidance and suppression of plant defenses by herbivores and pathogens. J Plant Interact 6:221–227. https://doi.org/10.1080/17429145.2010.551670

    Article  Google Scholar 

  • Barbosa P, Segarra A, Gross P (2000) Structure of two macrolepidopteran assemblages on Salix nigra (Marsh) and Acer negundo L.: abundance, diversity, richness, and persistence of scarce species. Ecol Entomol 25:374–379. https://doi.org/10.1046/j.1365-2311.2000.00273.x

    Article  Google Scholar 

  • Barker HL, Riehl JF, Bernhardsson C, Rubert-Nason KF, Lindroth RL (2020) Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition. Mol Ecol 28:4404–4421. https://doi.org/10.1111/mec.15158

    Article  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155. https://doi.org/10.1016/j.tree.2006.11.004

    Article  PubMed  Google Scholar 

  • Calle LDA, Quiñones ML, Erazo HF, Jaramillo N (2002) Morphometric discrimination of females of five species of Anopheles of the subgenus Nyssorhynchus from Southern and Northwest Colombia. Mem Inst Oswaldo Cruz 97(8):1191–1195. https://doi.org/10.1590/S0074-02762002000800021

    Article  Google Scholar 

  • Campbell AM, Lawrence AJ, Hudspath CB, Gruwell ME (2014) Molecular Identification of Diaspididae and elucidation of non-native species using the genes 28s and 16s. Insects 5(3):528–538. https://doi.org/10.3390/insects5030528

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon AFG (1972) Fecundity of brachypterous and macropterous alatae in Drepanosiphum dixoni (Callaphidae, Aphididae). Entomol Exp Applicata 15:335–340. https://doi.org/10.1111/j.1570-7458.1972.tb00218.x

    Article  Google Scholar 

  • Dixon AFG (1997) Aphid Ecology an optimization approach, pp 1–300, Springer Netherlands. https://doi.org/10.1007/978-94-011-5868-8)

  • Dixon AFG, Thieme T (2007) Aphids on deciduous trees. Naturalist's Handbooks 29: 138, The Richmond Publishing Co. Ltd

  • Foottit RG (1992) The use of ordination methods to resolve problems of species discrimination in the genus Cinara Curtis (Homoptera: Aphidoidea: Lachnidae) In: Sorenson JT, Foottit RG (eds) Ordination in the study of morphology, evolution and systematics of insects: applications and quantitative genetic rationals. Amsterdam: Elsevier; pp 193–221. (Google Scholar)

  • Hartley SE, Jones TH (2003) Plant diversity and insect herbivores: effects of environmental change in contrasting model systems. Oikos 101:6–17. https://doi.org/10.1034/j.1600-0706.2003.12566.x

    Article  Google Scholar 

  • Heie OE (1982) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark II: The family Drepanosiphidae. Scandinavian Science Press Ltd.: Klampenborg. (Google Scholar)

  • Heikinheimo O (1987) Wing polymorphism in Symydobius oblongus (Von Heyden, 1837) and Myzocallis myricae (Kaltenbach, 1843). In: Holman J, Pelikan J, Dixon AFG and Weismann L (eds) Population Structure, Genetics and Taxonomy of Aphids and Thysanoptera. SPB Academic Publishing: Smolenice pp 170–175. (Google Scholar)

  • Hille Ris Lambers D (1947) On some mainly western European aphids. Zoologische Mededeelingen 28:291–333. (nl/urn:nbn:nl:ui:19–318474)

  • Hille Ris Lambers D (1966) New and little-known aphids from Pakistan. Tijdschr Entomol 109:193–220. (Google Scholar)

  • Houck MA (1992) Morphological variation in an ectoparasite: Partitioning ecological and evolutionary influences. In: Sorensen RG, Foottit JT (eds): Ordination in the study of morphology, evolution and systematic of insects. Applications and quantitative genetic rationals. Elsevier, Amsterdam, pp 277–308. (Google Scholar)

  • Jonsson M, Kaartinen R, Straub CS (2017) Relationships between natural enemy diversity and biological control. Curr Opin Insect Sci 20:1–6. https://doi.org/10.1016/j.cois.2017.01.001

    Article  PubMed  Google Scholar 

  • Kennedy CEJ (1986) Attachment may be basis for specialization in oak aphids. Ecol Entomol 11:291–300. https://doi.org/10.1111/j.1365-2311.1986.tb00305.x

    Article  Google Scholar 

  • Luquez V, Hall D, Albrectsen BR, Karlsson J, Ingvarsson PK, Jansson S (2008) Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genet Gen 4:279–292. https://doi.org/10.1007/s11295-007-0108-y

    Article  Google Scholar 

  • Mackenzie A, Dixon AFG (1991) An ecological perspective of host alternation in aphids. Entomol Gen 16:265–284. https://doi.org/10.1127/entom.gen/16/1991/265

    Article  Google Scholar 

  • McCluney KE, George T, Frank SD (2018) Water availability influences arthropod water demand, hydration and community composition on urban trees. J Urban Ecol 4(1):juy003. https://doi.org/10.1093/jue/juy003

  • Miller G Foottit R (2009) The taxonomy of crop pests: the aphids, p 463–473. In: Foottit R, Adler P (eds) Insect Biodiversity Science and Society. Wiley-Blackwell, Oxford, UK, p 632 (Google Scholar)

  • Ossiannilsson F (1959) Contributions to the knowledge of Swedish aphids. II. List of species with find records and ecological notes. Kungl Lantbrukshögskolans Annaler Uppsala 25:375–527. (Google Scholar)

  • Panzer (1801) Faunae insectorum Germanicae initia, oder, Deutschlands Insecten 16(95):18. (Google Scholar)

  • Robinson KM, Hauzy C, Loeuille N, Albrectsen BR (2015) Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks. Ecol and Evol 5(14):2898–2915. https://doi.org/10.1002/ece3.1559

    Article  Google Scholar 

  • Robinson KM, Ingvarsson PK, Jansson S, Albrectsen BR (2012) Both spatial and genetic variation influence plant functional traits, a specialist-rich arthropod community, and their interaction. PLoS One 7(5):e37679. https://doi.org/10.1371/journal.pone.0037679

    Article  CAS  Google Scholar 

  • Rogers PC, Pinno BD, Šebesta J, Albrectsen BR, Li G, Ivanova N, Kusbach A, Kuuluvainen T, Landhäusser SM, Liu H, Myking T, Pulkkinen P, Wen Z, Kulakowski D (2019) A global view of aspen: Conservation science for widespread keystone systems. Glob Ecol Conserv 21:e00828. https://doi.org/10.1016/j.gecco.2019.e00828

    Article  Google Scholar 

  • Sànchez-Ruiz M, Sanmartín I (2000) Separation of Aspidiotes species using morphometric analysis (Coleoptera: Curculionidae). Eur J Entomol 97:85–94. https://doi.org/10.14411/eje.2000.016

    Article  Google Scholar 

  • Sanmartin I, Martin-Piera F (1999) A morphometric approach to the taxonomy of the genous Ceramida (Colcoptera: Scarabaeoidea: Melolonthidae). Can Entomol 131:573–592. https://doi.org/10.4039/Ent131573-5

    Article  Google Scholar 

  • Schrank FVP (1801) Blattlaus. Fauna Boica. Durchgedachte Geschichte der in Baiern einheimischen und zahmen Thiere. Johann Wilhelm Krüll. Ingolstadt, Germany, 2, 102–140. (Google Scholar)

  • Song N, Li H, Song F et al (2016) Molecular phylogeny of Polyneoptera (Insecta) inferred from expanded mitogenomic data. Sci Rep 6:36175. https://doi.org/10.1038/srep36175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varelas V, Langton M (2017) Forest biomass waste as a potential innovative source for rearing edible insects for food and feed – A review. Innov Food Sci Emerg Technol 41:193–205. https://doi.org/10.1016/j.ifset.2017.03.007

    Article  Google Scholar 

  • Wininger K, Rank N (2017) Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens. Ann N Y Acad Sci 1408(1):46–60. https://doi.org/10.1111/nyas.13541

    Article  PubMed  Google Scholar 

  • Wang X, Hua F, Wang L, Wilcove DS, Yu DW (2019) The biodiversity benefit of native forests and mixed-species plantations over monoculture plantations. Divers Distrib 25(11):1721–1735. https://doi.org/10.1111/ddi.12972

    Article  Google Scholar 

  • Zeller L, Pretzsch H (2019) Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity. For Ecol and Manag 434:193–204. https://doi.org/10.1016/j.foreco.2018.12.024

    Article  Google Scholar 

Download references

Acknowledgements

RKG is also thankful to Swedish Institute (SE) for providing the financial support under the Guest Scholarship Programme (letter no. 00622/2007 dated June 11, 2007) during this study.The authors are thankful to Dr. Poornima Saraswat, Assistant Professor, Mody University of Science and Technology, Sikar, Rajasthan, India for helping in the aphid sketch and its demarcation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajarshi Kumar Gaur or Benedicte R. Albrectsen.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 131 KB)

42690_2021_620_MOESM2_ESM.xls

Supplementary file2 (XLS 76 KB Table S1 Morphometric analysis for the characterization of characterize four nymph instars and adults of three Chaitophorus species)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raizada, R., Gaur, R.K. & Albrectsen, B.R. Recursive partitioning to prioritize morphometric traits that separate Aspen specialist Chaitophorus aphid by species and stage. Int J Trop Insect Sci 42, 941–946 (2022). https://doi.org/10.1007/s42690-021-00620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-021-00620-6

Keywords

Navigation