Skip to main content

Advertisement

Log in

Enzymatic profile of Aedes albopictus upon continuous exposure to insecticides throughout Penang, Malaysia

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

This study presents the insecticide susceptibility status and enzymatic activity profiling of Aedes albopictus mosquitoes involving glutathione s-transferase (GST), esterase, cytochrome P450 (Cyt P450) and acetylcholinesterase (AChE) from all the five districts of Penang, Malaysia with high incidence of dengue cases. World Health Organisation (WHO) bioassay and biochemical analysis were conducted and compared between field and susceptible strains to distinguish the role of enzymatic activities on xenobiotic exposure in Penang, Malaysia. WHO bioassay indicated that resistance to malathion was relatively lower (1.62 to 2.22-fold increase) compared to permethrin (2.26 to 2.74-fold increase). Total protein content of larvae from Lebuh Bukit Kecil (BK) strain (South West) was the most elevated among the field strains. The total protein content of larvae from all the districts except Lebuh Nipah (LN) strain (North East) were elevated and statistically significant (p˂0.05) upon comparison with the susceptible strain. Enzymatic activities of α-esterase and β-esterase were the highest in larvae collected from all the districts in Penang and displayed the most significant elevation (p˂0.05) in their respective specific enzyme activities followed by GST and Cyt P450. The results provide a better understanding of the current resistance phenomenon and enzymatic activity of the test enzymes in Ae. albopictus mosquitoes upon xenobiotic challenge. This information would be useful for effective insecticide-based management of the vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Amelia-Yap ZH, Chen CD, Sofian-Azirun M, Low VL (2018) Pyrethroid resistance in the dengue vector Aedes aegypti in the Southeast Asia: present situation in the prospects for management. Parasites Vectors 11:332

    PubMed  PubMed Central  Google Scholar 

  • Avicor SW, Wajidi MF, El-garj FM, Jaal Z, Yahaya ZS (2014) Insecticidal activity and expression of cytochrome P450 family 4 genes in Aedes albopictus after exposure to pyrethroid mosquito coils. Protein J 33:457–464

    CAS  PubMed  Google Scholar 

  • Becnel JJ (2006) Biological control of mosquitoes. Technical Bulletin of the Florida Mosquito Control Association 7:48–54

    Google Scholar 

  • Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468

    PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Brogdon WG, McAllister JC (1998) Insecticide resistance and vector control. Emerg Infect Dis 4:605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brogdon WG, Janet C, McAllister JC, Vulule J (1997) Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosq Control Assoc 13:233–237

    CAS  PubMed  Google Scholar 

  • Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Morse AP (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717

    PubMed  PubMed Central  Google Scholar 

  • Chan HH, Zairi J (2013) Permethrin resistance in Aedes albopictus (Diptera: Culicidae) and associated fitness costs. J Med Entomol 50:362–370

    CAS  PubMed  Google Scholar 

  • Chan HH, Mustafa FF, Zairi J (2011) Assessing the susceptibility status of Aedes albopictus on Penang Island using two different assays. Trop Biomed 28:464–470

    CAS  PubMed  Google Scholar 

  • Chen CD, Nazni WA, Lee HL, Seleena B, Sofian-Azirun M (2008) Biochemical detection of temephos resistance in Aedes (Stegomyia) aegypti (Linnaeus) from dengue endemic areas of Selangor state, Malaysia. Proc of ASEAN Congr Trop Med Parasitol 3:6–20

  • Chen CD, Nazni WA, Lee HL, Sofian-Azirun M (2013) Temephos resistance in field Aedes (Stegomyia) albopictus (Skuse) from Selangor, Malaysia. Trop Biomed 30:220–230

    CAS  PubMed  Google Scholar 

  • Chua KB, Chua IL, Chua IE, Chua KH (2005) Effect of chemical fogging on immature Aedes mosquitoes in natural field conditions. Singap Med J 46:639

    CAS  Google Scholar 

  • Davies TGE, Field LM, Usherwood PNR, Williamson MS (2007) DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59:151–162

    CAS  PubMed  Google Scholar 

  • de Abreu Lima-Catelani AR, Ceron CR, de Campos Bicudo HEM (2004) Variation of genetic expression during development, revealed by esterase patterns in Aedes aegypti (Diptera, Culicidae). Biochem Genet 42:69–84

    Google Scholar 

  • Emtithal AES, Thanaa AEB (2012) Efficacy of some insecticides on field populations of Culex pipiens (Linnaeus) from Egypt. J Basic Appl Zool 65:62–73

    CAS  Google Scholar 

  • Feyereisen R (1995) Molecular biology of insecticide resistance. Toxicol Lett 82:83–90

    PubMed  Google Scholar 

  • Fonseca-González I, Quiñones ML, Lenhart A, Brogdon WG (2011) Insecticide resistance status of Aedes aegypti (L.) from Colombia. Pest Manag Sci 67:430–437

    PubMed  Google Scholar 

  • Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227

    CAS  PubMed  Google Scholar 

  • Grigoraki L, Lagnel J, Kioulos I, Kampouraki A, Morou E, Labbé P, Weill M, Vontas J (2015) Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance, in the Asian tiger mosquito Aedes albopictus. PLoS Negl Trop Dis 9:e0003771

    PubMed  PubMed Central  Google Scholar 

  • Gubler DJ (1997) Epidemic dengue/dengue haemorrhagic fever: A global public health problem in the 21st century. Dengue Bull 21:1–19

    Google Scholar 

  • Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martínez E, Nathan MB (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8:S7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdan H, Sofian-Azirun M, Nazni WA, Lee HL (2005) Insecticide resistance development in Culex quinquefasciatus (Say), Aedes aegypti (L.) and Aedes albopictus (Skuse) larvae against malathion, permethrin and temephos. Trop Biomed 22:45–52

    PubMed  Google Scholar 

  • Hamzah SN, Alias Z (2016) Purification, expression and partial characterisation of glutathione s-transferases (GSTs) from three different strains of Aedes albopictus (Diptera: Culicidae). Trop Biomed 33:335–347

    CAS  PubMed  Google Scholar 

  • Hemingway J (1998) Techniques to detect insecticide resistance mechanism (field and laboratory manual). WHO/CDC/CPC/MAL/98.6 World Health Organization, Geneva. Available online: https://apps.who.int/iris/handle/10665/83780. Accessed 4 Aug 2018

  • Hemingway J (2000) The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol 30:1009–1015

    CAS  PubMed  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    CAS  PubMed  Google Scholar 

  • Hemingway J, Hawkes N, Prapanthadara LA, Jayawardenal KI, Ranson H (1998) The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Philos Trans R Soc B Biol Sci 353:1695–1699

    CAS  Google Scholar 

  • Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665

    CAS  PubMed  Google Scholar 

  • Jagadeshwaran U, Vijayan VA (2009) Biochemical characterization of deltamethrin resistance in a laboratory-selected strain of Aedes aegypti. Parasitol Res 104:1431–1438

    PubMed  Google Scholar 

  • Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, Tomita T (2014) Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target-site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis 8:e2948

    PubMed  PubMed Central  Google Scholar 

  • Khan HA, Akram W, Shehzad K, Shaalan EA (2011) First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasites Vectors 4:146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koou SY, Chong CS, Vythilingam I, Lee CY, Ng LC (2014) Insecticide resistance and its underlying mechanisms in field populations of Aedes aegypti adults (Diptera: Culicidae) in Singapore. Parasites Vectors 7:471

    PubMed  PubMed Central  Google Scholar 

  • Latif MA, Omar MY, Tan SG, Siraj SS, Ismail AR (2010) Biochemical studies on malathion resistance, inheritance and association of carboxylesterase activity in brown planthopper, Nilaparvata lugens complex in Peninsular Malaysia. Insect Sci 17:517–526

    Google Scholar 

  • Lee HL, Chen CD, Masri SM, Chiang YF, Chooi KH, Benjamin S (2008) Impact of larviciding with a Bacillus thuringiensis israelensis formulation, Vectobac WG®, on dengue mosquito vectors in a dengue endemic site in Selangor state, Malaysia. SE Asian J Trop Med Public Health 39:601–609

    CAS  Google Scholar 

  • Liu N, Xu Q, Zhu F, Zhang LEE (2006) Pyrethroid resistance in mosquitoes. Insect Sci 13:159–166

    Google Scholar 

  • Low VL, Chen CD, Lee HL, Tan TK, Chen CF, Leong CS, Lim YAL, Lim PE, Norma-Rashid Y, Sofian-Azirun M (2013) Enzymatic characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus Say (Diptera: Culicidae). PloS One 8:e79928

    PubMed  PubMed Central  Google Scholar 

  • Marriel NB, Tomé HVV, Guedes RCN, Martins GF (2016) Deltamethrin-mediated survival, behaviour, and ooenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitoes (Aedes aegypti). Acta Trop 156:88–96

    Google Scholar 

  • Ministry of Health (1997) Guidelines on the use of ovitrap for Aedes surveillance. Vector control unit. Vector borne disease infection. Ministry of Health, Kuala Lumpur, pp 1–7

  • Montella IR, Martins AJ, Viana-Medeiros PF, Lima JBP, Braga IA, Valle D (2007) Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg 77:467–477

    PubMed  Google Scholar 

  • Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, Yawson AE, Mitchell SN, Ranson H, Hemingway J, Paine MJ (2008) Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 4:e1000286

    PubMed  PubMed Central  Google Scholar 

  • Nazni WA, Lee HL, Azahari AH (2005) Adult and larval insecticide susceptibility status of Culex quinquefasciatus (Say) mosquitoes in Kuala Lumpur Malaysia. Trop Biomed 22:63–68

    CAS  PubMed  Google Scholar 

  • Ngoagouni C, Kamgang B, Brengues C, Yahouedo G, Paupy C, Nakouné E, Kazanji M, Chandre F (2016) Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus resistant to DDT and deltamethrin in the Central African Republic. Parasites Vectors 9:599

    PubMed  PubMed Central  Google Scholar 

  • Paiva MH, Lovin DD, Mori A, Melo-Santos MA, Severson DW, Ayres CF (2016) Identification of a major quantitative trait locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti. Genomics 107:40–48

    CAS  PubMed  Google Scholar 

  • Pang EL, Loh HS (2016) Current perspectives on dengue episode in Malaysia. Asian Pac J Trop Med 9:395–401

    PubMed  Google Scholar 

  • Pethuan S, Jirakanjanakit N, Saengtharatip S, Chareonviriyaphap T, Kaewpa D, Rongnoparut P (2007) Biochemical studies of insecticide resistance in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand. Trop Biomed 24:7–15

    CAS  PubMed  Google Scholar 

  • Rahim J, Ahmad AH, Kassim NFA, Ahmad H, Ishak IH, Rus AC, Maimusa HA (2016) Revised discriminating lethal doses for resistance monitoring program on Aedes albopictus against temephos and malathion in Penang Island, Malaysia. J Am Mosq Control Assoc 32:210–216

    PubMed  Google Scholar 

  • Rahim J, Ahmad AH, Maimusa AH (2017) Effects of temephos resistance on life history traits of Aedes albopictus (Skuse) (Diptera: Culicidae), a vector of arboviruses. Rev Bras Entomologia 61:312–317

    Google Scholar 

  • Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R (2002) Evolution of supergene families associated with insecticide resistance. Science 298:179–181

    CAS  PubMed  Google Scholar 

  • Rivero A, Vezilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 6:e1001000

    PubMed  PubMed Central  Google Scholar 

  • Saelim V, Brogdon WG, Rojanapremsuk J, Suvannadabba S, Pandii W, Jones JW, Sithiprasasna R (2005) Bottle and biochemical assays on temephos resistance in Aedes aegypti in Thailand. SE Asian J Trop Med Public Health 36:417–425

    Google Scholar 

  • Selvi S, Edah MA, Nazni WA, Lee HL, Azahari AH (2007) Characterization on malathion and permethrin resistance by bioassays and the variation of esterase activity with the life stages of the mosquito Culex quinquefasciatus. Trop Biomed 24:63–75

    CAS  PubMed  Google Scholar 

  • Shamaan NA, Hamidah R, Jeffries J, Hashim AJ, Ngah WW (1993) Insecticide toxicity, glutathione s-transferases and carboxylesterase activities in the larva of the Aedes mosquito. Comp Biochem Physiol Part C Comp Pharmacol 104:107–110

    CAS  Google Scholar 

  • Smith LB, Kasai S, Scott JG (2016) Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pestic Biochem Physiol 133:1–12

    CAS  PubMed  Google Scholar 

  • Sokhna C, Ndiath MO, Rogier C (2013) The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin Microbiol Infect 19:902–907

    CAS  PubMed  Google Scholar 

  • Taskin G, Dogaroglu T, Kilic S, Dogac E, Taskin V (2016) Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens. Pestic Biochem Physiol 129:14–27

    CAS  PubMed  Google Scholar 

  • Vanlerberghe V, Toledo ME, Rodriguez M, Gomez D, Baly A, Benitez JR, Van Der Stuyft P (2009) Community involvement in dengue vector control: cluster randomised trial. BMJ 338:b1959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vontas J, Kioulos E, Pavlidi N, Morou E, Della Torre A, Ranson H (2012) Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol 104:126–131

    CAS  Google Scholar 

  • Wan-Norafikah O, Nazni WA, Lee HL, Zainol-Ariffin P, Sofian-Azirun M (2010) Permethrin resistance in Aedes aegypti (Linnaeus) collected from Kuala Lumpur, Malaysia. J Asia Pac Entomol 13:175–182

    Google Scholar 

  • Wan-Norafikah O, Nazni WA, Lee HL, Zainol-Ariffin P, Sofian-Azirun M (2013) Susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to permethrin in Kuala Lumpur, Malaysia. Asian Biomed 7:51–62

    Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13. Available online: https://apps.who.int/iris/bitstream/handle/10665/69101/WHO_CDS_WHOPES_GCDPP_2005.13.pd. Accessed 4 Aug 2018

  • World Health Organization (2011) Comprehensive guidelines for prevention and control of dengue and dengue haemorrhagic fever. Available online: https://apps.who.int/iris/handle/10665/204894. Accessed 7 Jan 2020

  • Yaicharoen R, Kiatfuengfoo R, Chareonviriyaphap T, Rongnoparut P (2005) Characterization of deltamethrin resistance in field populations of Aedes aegypti in Thailand. J Vector Ecol 30:144–150

    PubMed  Google Scholar 

  • Yap HH, Jahangir K, Zairi J (2000) Field efficacy of four insect repellent products against vector mosquitoes in a tropical environment. J Am Mosq Control Assoc 16(3):241–244

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was supported by Ministry of Higher Education Malaysia, Fundamental Research Grant Scheme, FRGS (203.PBIOLOGI.6711639).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Nasuha Hamzah.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouk, S.A., Avicor, S.W. & Hamzah, S.N. Enzymatic profile of Aedes albopictus upon continuous exposure to insecticides throughout Penang, Malaysia. Int J Trop Insect Sci 41, 1451–1459 (2021). https://doi.org/10.1007/s42690-020-00343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00343-0

Keywords

Navigation