Skip to main content
Log in

Effect of nitenpyram on the control of Reticulitermes flaviceps

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

It is important to pursue more effective and environmentally friendly methods of termite control. Nitenpyram has achieved good control effect in some insects. Herein, we evaluated the effect of nitenpyram (10, 20, 40, 80 and 160 ppm) in conjunction with two kinds of the block (clay and sand) on the survival, body water content, food consumption, tunneling behavior, microbial infectivity and three behavior patterns (corpse-burying behavior, cannibalism behavior, and particle transport behavior) of the termite Reticulitermes flaviceps. We found that the 10–160 ppm concentration nitenpyram significantly inhibited the survival, food consumption, particle transport behavior, corpse-burying behavior, cannibalism behavior, and tunneling behavior of the termites. The survival of R. flaviceps decreased with the increase of the concentration of nitenpyram, and the survival was the lowest at 160 ppm. Still, there was no significant difference in the conditions with concentrations of 80 and 160 ppm. Therefore, the 80 ppm concentration of nitenpyram in combination with pathogenic microorganisms may have great potential values in termite control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bivehed E, Gustafsson A, Berglund A, Hellman B (2019) Evaluation of potential DNA-damaging effects of nitenpyram and imidacloprid in human U937-cells using a new statistical approach to analyse comet data. Expos Health 2019:1–8

    Google Scholar 

  • Bulmer MS, Bachelet I, Raman R, Rosengaus RB, Sasisekharan R (2009) Targeting an antimicrobial effector function in insect immunity as a pest control strategy. P NATL ACAD SCI USA 106:12652–12657

    Article  CAS  Google Scholar 

  • Butters MP, Kobylinski KC, Deus KM, Da Silva IM, Gray M, Sylla M, Foy BD (2012) Comparative evaluation of systemic drugs for their effects against anopheles gambiae. Acta Trop 121:34–43

    Article  CAS  Google Scholar 

  • Casida JE (2018) Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annu Rev Entomol 63:125–144

    Article  CAS  Google Scholar 

  • Collins M, Richards A (1966) Studies on water relations in north american termites. II. water loss and cuticular structures in eastern species of the Kalotermitidae (Isoptera). Ecology 47:328–331

    Article  Google Scholar 

  • Cremer S, Pull CD, Furst MA (2018) Social immunity: emergence and evolution of colony-level disease protection. Annu Rev Entomol 63:105–123

    Article  CAS  Google Scholar 

  • Culliney TW, Grace JK (2000) Prospects for the biological control of subterranean termites (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bull Entomol Res 90:9–21

    Article  CAS  Google Scholar 

  • Daborn PJ, Lumb C, Boey A, Wong W, ffrench-Constant RH, Batterham P (2007) Evaluating the insecticide resistance potential of eight drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochem Mol 37:512–519

    Article  CAS  Google Scholar 

  • Diez L, Lejeune P, Detrain C (2014) Keep the nest clean: survival advantages of corpse removal in ants. Biol Lett 10:20140306–20140306

    Article  Google Scholar 

  • Haagsma K, Rust M, Reierson D, Atkinson T, Kellum D (1995) Formosan subterranean termite established in California. Calif Agric 49:30–33

    Article  Google Scholar 

  • Harris W (1951) The ubiquitous termite. E Afr Agr J 17:60–62

    Google Scholar 

  • Henderson G (2008) The termite menace in new orleans: did they cause the floodwalls to tumble? Am Entomol 54:156–162

    Article  Google Scholar 

  • Hong X, Zhao X, Tian X, Li J, Zha J (2018) Changes of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus). Environ Pollut 233:862–871

    Article  CAS  Google Scholar 

  • Hrdý I, Kuldova J, Wimmer Z (2001) A juvenile hormone analogue with potential for termite control: laboratory tests with Reticulitermes santonensis, Reticulitermes flaviceps and Coptotermes formosanus (Isopt., Rhinotermitidae). J Appl Entomol 125:403–411

    Article  Google Scholar 

  • Huang F, Zhu S, Ping Z, He X, Li G, Gao D (2000) Fauna Sinica: Insecta, vol 17. Science Press, Beijing

    Google Scholar 

  • Iwasa T, Motoyama N, Ambrose JT, Roe RM (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23:371–378

    Article  CAS  Google Scholar 

  • Jiang J, Ma D, Zhang Z, Yu C, Liu F, Mu W (2018) Favorable compatibility of nitenpyram with the aphid predator, Coccinella septempunctata L. (Coleoptera: Coccinellidae). Environ Sci Pollut Res 25:27393–27401

    Article  CAS  Google Scholar 

  • Jouquet P, Tessier D, Lepage M (2004) The soil structural stability of termite nests: role of clays in Macrotermes bellicosus (Isoptera, Macrotermitinae) mound soils. Eur J Soil Biol 40:23–29

    Article  Google Scholar 

  • Kaschuk G, Santos JCP, Almeida JA, Sinhorati DC, Berton-Junior JF (2006) Termite activity in relation to natural grassland soil attributes. Sci Agric 63:583–588

    Article  Google Scholar 

  • Li GH, Liu L, Lei CL, Huang QY (2015) A trade-off between antipredatory behavior and pairing competition produced by male–male tandem running in three Reticulitermes species. Insect Sci 22:560–568

    Article  Google Scholar 

  • Lima JT, Costa-Leonardo AM (2012) Tunneling behavior of the Asian subterranean termite in heterogeneous soils: presence of cues in the foraging area. Anim Behav 83:1269–1278

    Article  Google Scholar 

  • Liu L, Li G, Sun P, Lei C, Huang Q (2015) Experimental verification and molecular basis of active immunization against fungal pathogens in termites. Sci Rep 5:15106–15106

    Article  CAS  Google Scholar 

  • Liu L, Zhao XY, Tang QB, Lei CL, Huang QY (2019) The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 11:244

    Article  CAS  Google Scholar 

  • Liu L, Wang CC, Zhao XY, Guan JX, Lei CL, Huang QY (2020) Isocitrate dehydrogenase-mediated metabolic disorders disrupt active immunization against fungal pathogens in eusocial termites. J Pestic Sci 93:291–301

    Article  Google Scholar 

  • Mo J, Pan C, Zhang S, Chen C, He H, Cheng J (2005) Toxicity of acetamiprid to workers of Reticulitermes flaviceps (Isoptera: Rhinotermitidae), Coptotermes formosanus (Isoptera: Rhinotermitidae) and Odontotermes formosanus (Isoptera: Termitidae). J Pestic Sci 30:187–191

    Article  CAS  Google Scholar 

  • Neoh K-B, Yeap B-K, Tsunoda K, Yoshimura T, Lee C-Y (2012) Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses. PLoS One 7:e36375

    Article  CAS  Google Scholar 

  • Rosengaus RB, Traniello JF, Bulmer MS (2010) Ecology, behavior and evolution of disease resistance in termites. In: Bignell DE (ed) Biology of termites: a modern synthesis. Springer, Berlin, pp 165–191

    Chapter  Google Scholar 

  • Sun Q, Zhou X (2013) Corpse management in social insects. Int J Biol Sci 9:313–321

    Article  Google Scholar 

  • Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364

    Article  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  CAS  Google Scholar 

  • Ulyshen MD, Shelton TG (2012) Evidence of cue synergism in termite corpse response behavior. Naturwissenschaften 99:89–93

    Article  CAS  Google Scholar 

  • Verma M, Sharma S, Prasad R (2009) Biological alternatives for termite control: a review. Int Biodeter Biodegr 63:959–972

    Article  CAS  Google Scholar 

  • Wang C, Henderson G (2013) Evidence of formosan subterranean termite group size and associated bacteria in the suppression of entomopathogenic bacteria, bacillus thuringiensis subspecies israelensis and thuringiensis. Ann Entomol Soc Am 106:454–462

    Article  Google Scholar 

  • Wang C, Henderson G (2014) Clay preference and particle transport behavior of formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study. Insect Sci 21:785–795

    Article  Google Scholar 

  • Wang C, Henderson G, Gautam BK (2013) Lufenuron suppresses the resistance of formosan subterranean termites (Isoptera: Rhinotermitidae) to entomopathogenic bacteria. J Econ Entomol 106:1812–1818

    Article  CAS  Google Scholar 

  • Wang C, Henderson G, Gautam BK, Chen X (2014) Lethal and sublethal effects of lufenuron on the formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 107:1573–1581

    Article  Google Scholar 

  • Wang SY, Qi YF, Desneux N, Shi XY, Biondi A, Gao XW (2017) Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii. J Pest Sci 90:389–396

    Article  Google Scholar 

  • Yanagawa A, Shimizu S (2007) Resistance of the termite, Coptotermes formosanus shiraki to metarhizium anisopliae due to grooming. Biocontrol 52:75–85

    Article  Google Scholar 

  • Zhang ZQ, Wang Y, Zhao YH, Li BX, Lin J, Zhang XF, Liu F, Mu W (2017) Nitenpyram seed treatment effectively controls against the mirid bug Apolygus lucorum in cotton seedlings. Sci Rep 7:9

    Article  Google Scholar 

  • Zhukovskaya M, Yanagawa A, Forschler B (2013) Grooming behavior as a mechanism of insect disease defense. Insects 4:609–630

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for providing valuable comments on earlier drafts of this manuscript. This work was supported by the National Natural Science Foundation of China (31601891) and the Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization (EWPL201615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganghua Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Bai, Y., Zhong, H. et al. Effect of nitenpyram on the control of Reticulitermes flaviceps. Int J Trop Insect Sci 41, 471–477 (2021). https://doi.org/10.1007/s42690-020-00228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00228-2

Keywords

Navigation