Skip to main content
Log in

Stable fitting of noisy stress relaxation data

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

The mechanical behavior of a viscoelastic material can often be described by a spectrum of Maxwell-Wiechert elements. The inverse problem associated with estimating the parameters of this spectrum from the results of viscoelastic relaxation (ramp-and-hold) test is in general ill-posed and unstable, with estimates highly sensitive to initial conditions and noise. Here, we demonstrate stable estimation of a continuous viscoelastic spectrum from stress relaxation experiments using Tikhonov regularization. We assess the effects of noise and sampling frequency on these estimates, and describe regularization parameter selection. We demonstate the algorithm by estimating the viscoelastic relaxation spectra of soft vinyl samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abhilash, A., Baker, B.M., Trappmann, B., Chen, C.S., Shenoy, V.B.: Remodeling of fibrous extracellular matrices by contractile cells: predictions from discrete fiber network simulations. Biophys. J. 107(8), 1829–1840 (2014)

    Article  Google Scholar 

  2. Abramowitch, S.D., Woo, S.L., Clineff, T.D., Debski, R.E.: An evaluation of the quasi-linear viscoelastic properties of the healing medial collateral ligament in a goat model. Ann. Biomed. Eng. 32(3), 329–335 (2004)

    Article  Google Scholar 

  3. Arbogast, K.B., Margulies, S.S.: Material characterization of the brainstem from oscillatory shear tests. J. Biomech. 31(9), 801–807 (1998)

    Article  Google Scholar 

  4. Babaei, B., Abramowitch, S.D., Elson, E.L., Thomopoulos, S., Genin, G.M.: A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials. J. R. Soc. Interf. 12(113), 20150707 (2015)

    Article  Google Scholar 

  5. Babaei, B., Davarian, A., Lee, S.L., Pryse, K.M., McConnaughey, W.B., Elson, E.L., Genin, G.M.: Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen. Acta Biomater. 37, 28–37 (2016)

    Article  Google Scholar 

  6. Babaei, B., Davarian, A., Pryse, K.M., Elson, E.L., Genin, G.M.: Efficient and optimized identification of generalized maxwell viscoelastic relaxation spectra. J. Mech. Behav. Biomed. Mater. 55, 32–41 (2016)

    Article  Google Scholar 

  7. Babaei, B., Velasquez-Mao, A.J., Thomopoulos, S., Elson, E.L., Abramowitch, S.D., Genin, G.M.: Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. J. Mech. Behav. Biomed. Mater. 69, 193–202 (2017)

    Article  Google Scholar 

  8. Beale, E.: Confidence regions in non-linear estimation. J. R. Statist. Soc.y: Series B (Methodol.) 22(1), 41–76 (1960)

    MathSciNet  MATH  Google Scholar 

  9. Carp, S., Selb, J., Fang, Q., Moore, R., Kopans, D., Rafferty, E., Boas, D.: Dynamic functional and mechanical response of breast tissue to compression. Opt. Express 16(20), 16064–16078 (2008)

    Article  Google Scholar 

  10. Chen, S., Sanchez, W., Callstrom, M.R., Gorman, B., Lewis, J.T., Sanderson, S.O., Greenleaf, J.F., Xie, H., Shi, Y., Pashley, M., et al: Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology 266(3), 964–970 (2013)

    Article  Google Scholar 

  11. Clancy, N.T., Nilsson, G.E., Anderson, C.D., Leahy, M.J.: A new device for assessing changes in skin viscoelasticity using indentation and optical measurement. Skin Res. Technol. 16(2), 210–228 (2010)

    Article  Google Scholar 

  12. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Corman, B., Duriez, M., Poitevin, P., Heudes, D., Bruneval, P., Tedgui, A., Levy, B.I.: Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proc. Natl. Acad. Sci. 95(3), 1301–1306 (1998)

    Article  Google Scholar 

  14. Edelsten, L., Jeffrey, J.E., Burgin, L.V., Aspden, R.M.: Viscoelastic deformation of articular cartilage during impact loading. Soft Matter 6(20), 5206–5212 (2010)

    Article  Google Scholar 

  15. Elson, E., Genin, G.: The role of mechanics in actin stress fiber kinetics. Exp. Cell Res. 319(16), 2490–2500 (2013)

    Article  Google Scholar 

  16. Elson, E.L., Genin, G.M.: Tissue constructs: platforms for basic research and drug discovery. Interf. Focus 6(1), 20150095 (2016)

    Article  Google Scholar 

  17. Fang, F., Sawhney, A.S., Lake, S.P.: Different regions of bovine deep digital flexor tendon exhibit distinct elastic, but not viscous, mechanical properties under both compression and shear loading. J. Biomech. 47(12), 2869–2877 (2014)

    Article  Google Scholar 

  18. Ferry, J., Ferry, J.: Viscoelastic Properties of Polymers. Wiley (1980)

  19. Frost, H.J., Ashby, M.F.: Deformation Mechanism Maps: the Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford (1982)

    Google Scholar 

  20. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guilak, F., Tedrow, J.R., Burgkart, R.: Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269(3), 781–786 (2000)

    Article  Google Scholar 

  22. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the l-curve. SIAM Rev. 34(4), 561–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hansen, P.C.: Regularization tools version 4.0 for matlab 7.3. Numer. Algor. 46(2), 189–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms. Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Book  MATH  Google Scholar 

  25. Hansen, P.C., Kilmer, M.E., Kjeldsen, R.H.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT Numer. Math. 46(1), 41–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hansen, P.C., O’Leary, D.P.: The use of the l-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Honerkamp, J., Weese, J.: Determination of the relaxation spectrum by a regularization method. Macromolecules 22(11), 4372–4377 (1989)

    Article  Google Scholar 

  28. Kamiński, M. M.: Structural sensitivity analysis in nonlinear and transient problems using the local response function technique. Struct. Multidiscip. Optim. 43(2), 261–274 (2011)

    Article  MATH  Google Scholar 

  29. Lakes, R.: Viscoelastic Materials. Cambridge University Press (2009)

  30. Lee, S.L., Nekouzadeh, A., Butler, B., Pryse, K.M., McConnaughey, W.B., Nathan, A.C., Legant, W.R., Schaefer, P.M., Pless, R.B., Elson, E.L., et al: Physically-induced cytoskeleton remodeling of cells in three-dimensional culture. PLoS One 7(12), e45512 (2012)

    Article  Google Scholar 

  31. Lockett, F.: Nonlinear Viscoelastic Solids. Academic Press (1972)

  32. Mahaffy, R., Park, S., Gerde, E., Käs, J., Shih, C.: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86(3), 1777–1793 (2004)

    Article  Google Scholar 

  33. Mao, R., Tang, J., Swanson, B.: Relaxation time spectrum of hydrogels by contin analysis. J. Food Sci. 65(3), 374–381 (2000)

    Article  Google Scholar 

  34. MATLAB: version 9.0.0.341360 (R2016a). The MathWorks Inc., Natick, Massachusetts (2016)

  35. McDougall, I., Orbey, N., Dealy, J.M.: Inferring meaningful relaxation spectra from experimental data. J. Rheol. 58(3), 779–797 (2014)

    Article  Google Scholar 

  36. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer Science & Business Media (2012)

  37. Nekouzadeh, A., Pryse, K.M., Elson, E.L., Genin, G.M.: Stretch-activated force shedding, force recovery, and cytoskeletal remodeling in contractile fibroblasts. J. Biomech. 41(14), 2964–2971 (2008)

    Article  Google Scholar 

  38. Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations, 2nd edn. Handbooks of Mathematical Equations, Chapman and Hall/CRC (2008)

    Book  MATH  Google Scholar 

  39. Price, G.: Isolation of instability in the fredholm integral equation of the first kind: application to the deconvolution of noisy spectra. J. Appl. Phys. 53(7), 4571–4578 (1982)

    Article  Google Scholar 

  40. Provencher, S.W.: Contin: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27(3), 229–242 (1982)

    Article  Google Scholar 

  41. Pryse, K.M., Nekouzadeh, A., Genin, G.M., Elson, E.L., Zahalak, G.I.: Incremental mechanics of collagen gels: new experiments and a new viscoelastic model. Ann. Biomed. Eng. 31(10), 1287–1296 (2003)

    Article  Google Scholar 

  42. Pryse, K.M., Rong, X., Whisler, J.A., McConnaughey, W.B., Jiang, Y.F., Melnykov, A.V., Elson, E.L., Genin, G.M.: Confidence intervals for concentration and brightness from fluorescence fluctuation measurements. Biophys. J. 103(5), 898–906 (2012)

    Article  Google Scholar 

  43. Salcudean, S.E., French, D., Bachmann, S., Zahiri-Azar, R., Wen, X., Morris, W.J.: Viscoelasticity modeling of the prostate region using vibro-elastography. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 389–396. Springer (2006)

  44. Scherzer, O.: The use of Morozov’s discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems. Computing 51(1), 45–60 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Schregel, K., née Tysiak, E W., Garteiser, P., Gemeinhardt, I., Prozorovski, T., Aktas, O., Merz, H., Petersen, D., Wuerfel, J., Sinkus, R.: Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proceedings of the National Academy of Sciences, p 201200151 (2012)

  46. Wahba, G.: Practical approximate solutions to linear operator equations when the data are noisy. SIAM J. Numer. Anal. 14(4), 651–667 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, H., Abhilash, A., Chen, C.S., Wells, R.G., Shenoy, V.B.: Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys. J. 107(11), 2592–2603 (2014)

    Article  Google Scholar 

  48. Wang, Y., Li, H., Zhang, Y.: Understanding the viscoelastic behavior of arterial elastin in glucose via relaxation time distribution spectrum. J. Mech. Behav. Biomed. Mater. 77, 634–641 (2018)

    Article  Google Scholar 

  49. Wiechert, E.: Gesetze der elastischen nachwirkung für constante temperatur. Ann. Phys. 286(11), 546–570 (1893)

    Article  MATH  Google Scholar 

  50. Wiff, D., Gehatia, M.: Inferring mechanical relaxation spectra as an ill-posed problem. J. Appl. Phys. 46 (10), 4231–4234 (1975)

    Article  Google Scholar 

  51. Xu, B., Li, H., Zhang, Y.: An experimental and modeling study of the viscoelastic behavior of collagen gel. J. Biomech. Eng. 135(5), 054501 (2013)

    Article  Google Scholar 

  52. Xu, B., Li, H., Zhang, Y.: Understanding the viscoelastic behavior of collagen matrices through relaxation time distribution spectrum. Biomatter 3(3), e24651 (2013)

    Article  Google Scholar 

  53. Zahalak, G., McConnaughey, W., Elson, E.: Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J. Biomech. Eng. 112(3), 283–294 (1990)

    Article  Google Scholar 

Download references

Funding

This work was funded in part by the National Institutes of Health through grant U01EB016422, and by the National Science Foundation through the Science and Technology Center for Engineering Mechanobiology, grant CMMI 1548571.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy M. Genin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowe, R.A., Pryse, K.M., Elson, E.L. et al. Stable fitting of noisy stress relaxation data. Mech Soft Mater 1, 9 (2019). https://doi.org/10.1007/s42558-019-0010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-019-0010-4

Keywords

Navigation