Skip to main content

Advertisement

Log in

Analytical and experimental investigation of puncture-cut resistance of soft membranes

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

Modeling and evaluating critical puncture-cutting force and total applied energy are among the most important steps in characterizing the resistance of protective materials to sharp-tipped object insertion. This paper explores the relationship between these two mechanical properties, force and energy, corresponding to the insertion of a pointed blade into soft membranes. The paper’s main contribution includes the addition of friction energy to the existing analytical cutting model in order to develop a more comprehensive model. This energy is provided by the normal stress (contact pressure) caused by the created fracture surface. The contact pressure is applied on both lateral sides of the pointed blade. In this work, a model describing the combined puncture and cutting of protective materials is developed using force distribution analysis and basic concepts of fracture mechanics. Results show that the critical puncture-cutting force (FP/C) required for complete insertion of a pointed blade decreases with the increase of the puncture-cut ratio, ζ, given by the shape of the pointed blade. In other words, the puncture cutting of soft membranes is easier when the pointed blade has a high cutting edge angle than when it has a small cutting edge angle. Fracture mechanics theory is then used to determine the relationship between FP/C and the total puncture-cutting energy, GTotal, that includes fracture toughness of material and friction energy. The presented model is verified by comparing the predicted values of FP/C with experimental data obtained from puncture-cutting tests of soft elastomeric materials and soft-coated fabrics by three pointed blades. According to the proposed model, the methods corresponding to force measurement (FP/C) or energy calculation (GTotal) are both able to evaluate accurately the puncture-cut resistance of protective materials by any sharp-tipped objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ADMET:

Advanced Machine Technology

Ag/AgCl:

Silver/silver chloride

ASTM:

ASTM International (previously known as American Society for Testing and Materials)

Eq.:

Equation

ISO:

International Organization for Standardization

A :

Created fracture surface

dv :

Increment of penetration depth

dh :

Increment of cutting length

dz:

Increment of pointed-blade displacement

F :

Critical cutting force

f :

Lateral friction stress

F P :

Pushing force

F P/C :

Critical puncture-cutting force

G Fracture :

True fracture energy

G Friction :

Friction energy

G Total :

Total puncture-cutting energy

l :

Relative penetration between material and blade

L :

Contact cutting edge length

M friction :

Friction contribution obtained from shear yield stress of a material

R :

Fracture toughness of a material

t :

Sample thickness

U Total :

Total puncture-cutting work

U Fracture :

Fracture work

U Friction :

Friction work

ξ′ :

Constant parameter

ξ :

Slice-push ratio

α :

Cutting edge angle

ζ:

Puncture-cut ratio

τ :

Friction stress

σ :

Radial stress

References

  1. F1342/F1342M-05 e1: Standard Test Method for Protective Clothing Material Resistance to Puncture. Annual book of ASTM standards. ASTM International, West Conshohocken (2013). https://doi.org/10.1520/F1342-05R13

    Book  Google Scholar 

  2. ASTM F2878-10: Standard Test Method for Protective Clothing Material Resistance to Hypodermic Needle Puncture. Annual book of ASTM standards, vol. 11.03, pp. 1–5. West Conshohocken, ASTM International (2010). https://doi.org/10.1520/F2878-10

  3. ASTM F2992/F2992M-15: Standard Test Method for Measuring Cut Resistance of Materials Used in Protective Clothing with Tomodynamometer (TDM-100) Test Equipment. ASTM International, West Conshohocken (2015). https://doi.org/10.1520/F2992_F2992M-15

    Book  Google Scholar 

  4. ISO 13997:1999: Protective Clothing – Mechanical Properties – Determination of Resistance to Cutting by Sharp Objects, pp. 11–20. International Organization for Standardization, Geneva (1999)

    Google Scholar 

  5. Triki, E., Nguyen-Tri, P., Azaiez, M., Gauvin, C., Vu-Khanh, T.: Combined puncture/cutting of elastomer membranes by pointed blades: characterization of mechanisms. J. Appl. Polym. Sci. 132(26), 42150 (2015). https://doi.org/10.1002/app.42150

    Article  Google Scholar 

  6. Triki, E.: Combined puncture/cutting of elastomer membranes by pointed blades: an alternative approach of fracture energy. Mech. Mater. J. 97, 19–25 (2016). https://doi.org/10.1016/j.mechmat.2016.02.010

    Article  Google Scholar 

  7. Triki, E., Nguyen-Tri, P., Gauvin, C., Vu-Khanh, T.: Combined puncture and cutting of elastomer membranes: a fracture energy approach. J. Appl. Polym. Sci. 134, 44945 (2017). https://doi.org/10.1002/app.44945

    Article  Google Scholar 

  8. Atkins, A.G., Xu, X., Jeronimidis, G.: Cutting, by ‘pressing and slicing’ of thin floppy slices of materials illustrated by experiments on cheddar cheese and salami. J. Mater. Sci. 39, 2761–2766 (2004). https://doi.org/10.1023/B:JMSC.0000021451.17182.86

    Article  Google Scholar 

  9. Atkins, A.G.: Slice–push, formation of grooves and the scale effect in cutting. Interface Focus. 6(3), 0019 (2016). https://doi.org/10.1098/rsfs.2016.0019

    Article  MathSciNet  Google Scholar 

  10. Vu-Khanh, T., Vu, T.B.N., Nguyen, C.T., Lara, J.: Gants de protection: Étude sur la résistance des gants aux agresseurs mécaniques multiples [Protective Gloves: Study of the Resistance of Gloves to Multiple Mechanical Aggressors]. IRSST Report R-424. Montreal: Institut de recherche Robert-Sauvé en santé et en sécurité. http://www.irsst.qc.ca/publications-et-outils/publication/i/100146/n/protective-gloves-study-of-the-resistance-of-gloves-to-multiple-mechanical-aggressors-r-424 (2005). Accessed (Received february 11, - Read February 26, 1920)

  11. Griffith, A.A.: Phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London Ser. A221(582–593), 163–198 (1921). https://doi.org/10.1098/rsta.1921.0006

    Article  Google Scholar 

  12. Atkins, T.: The science and engineering of cutting: the mechanics and processes of separating and puncturing biomaterials, metals and non-metals. Butterworth-Heinemann, Oxford (2009) 432 pages

    Google Scholar 

  13. Rivlin, R.S., Thomas, A.G.: Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 10, 291–318 (1953). https://doi.org/10.1002/pol.1953.120100303

    Article  Google Scholar 

  14. Triki, E., Dolez, P.I., Vu-Khanh, T.: Tear resistance of woven textiles – criterion and mechanisms. Compos. Part B. 42(7), 1851–1859 (2011). https://doi.org/10.1016/j.compositesb.2011.06.015

    Article  Google Scholar 

  15. Vu Thi, B.N., Vu-Khanh, T., Lara, J.: Effect of friction on cut resistance of polymers. J. Thermoplast. Compos. Mater. 18(1), 23–35 (2005). https://doi.org/10.1177/0892705705041157

    Article  Google Scholar 

  16. Lake, G.H., Yeoh, O.H.: Measurement of rubber cutting resistance in the absence of friction. Int. J. Fract. 14, 509–526 (1978). https://doi.org/10.1007/BF01390472

    Article  Google Scholar 

  17. Lake, G.J., Yeoh, O.H.: Effect of crack tip sharpness on the strength of vulcanized rubbers. J. Polym. Sci. 25, 1157–1190 (1987). https://doi.org/10.1002/polb.1987.090250601

    Article  Google Scholar 

  18. Nguyen, C.T., Vu-Khanh, T., Dolez, P.I., Lara, J.: Puncture of elastomer membranes by medical needles. Part II: mechanics. Int. J. Fract. 155, 83–91 (2009). https://doi.org/10.1007/s10704-009-9325-8

    Article  Google Scholar 

  19. Triki, E., Nguyen, T.P., Gauvin, C., Azaiez, M., Vu-Khanh, T.: Résistance des matériaux de protection aux agresseurs mécaniques multiples : coupure et perforation simultanées [Resistance of Protective Materials to Multiple Mechanical Stresses: Simultaneous Cutting and Puncturing]. IRSST Report R-903. Montreal: Institut de recherche Robert-Sauvé en santé et en sécurité. http://www.irsst.qc.ca/en/publications-tools/publication/i/100865/n/resistance-des-materiaux-de-protection-aux-agresseurs-mecaniques-multiples-coupure-et-perforation-simultanees (2016). Accessed August 20, 2014

  20. Casanova, F., Carney, P.R., Sarntinoranont, M.: In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain. J. Neurosci. Methods. 237, 79–89 (2014). https://doi.org/10.1016/j.jneumeth.2014.08.012

    Article  Google Scholar 

  21. Triki, E., Gauvin, C.: Combined Puncture and Cutting of Soft-Coated Fabrics by a Pointed Blade: Energy, Force, and Stress Failure Criteria. Accepted in J. Ind. Text (2019). Accessed October 31, 2018

Download references

Funding

This work was financially supported by the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ennouri Triki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triki, E., Gauvin, C. Analytical and experimental investigation of puncture-cut resistance of soft membranes. Mech Soft Mater 1, 6 (2019). https://doi.org/10.1007/s42558-019-0007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-019-0007-z

Keywords

Navigation