Skip to main content
Log in

Twisted Linear Periods and a New Relative Trace Formula

  • Original Article
  • Published:
Peking Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the linear periods on \({{\,\textrm{GL}\,}}_{2n}\) twisted by a character using a new relative trace formula. We establish the relative fundamental lemma and the transfer of orbital integrals. Together with the spectral isolation technique of Beuzart-Plessis–Liu–Zhang–Zhu, we are able to compare the elliptic part of the relative trace formulae and to obtain new results generalizing Waldspurger’s theorem in the \(n=1\) case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenbud, A., Gourevitch, D.: Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet–Rallis’s theorem. Duke Math. J. 149(3), 509–567 (2009)

  2. Arthur, J., Clozel, L.: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies, vol. 120. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  3. Beuzart-Plessis, R.: On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad. Invent. Math. 214(1), 437–521 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beuzart-Plessis, R., Liu, Y., Zhang, W., Zhu, X.: Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture. Ann. Math. (2) 194(2), 519–584 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, F., Sun, B.: Uniqueness of twisted linear periods and twisted Shalika periods. Sci. China Math. 63(1), 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feigon, B., Martin, K., Whitehouse, D.: Periods and nonvanishing of central L-values for GL(2n). Isr. J. Math. 225(1), 223–266 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedberg, S., Jacquet, H.: Linear periods. J. Reine Angew. Math. 443, 91–139 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Getz, J.R., Wambach, E.: Twisted relative trace formulae with a view towards unitary groups. Am. J. Math. 136(1), 1–58 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, J.: On a generalization of a result of Waldspurger. Can. J. Math. 48(1), 105–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, J.: Spherical characters on certain p-adic symmetric spaces, MPIM preprint 1998(24). https://archive.mpim-bonn.mpg.de/id/eprint/525/ (1998)

  11. Jacquet, H.: Sur un résultat de Waldspurger. Ann. Sci. École Norm. Sup. (4) 19(2), 185–229 (1986)

  12. Jacquet, H.: Sur un résultat de Waldspurger. II. Compos. Math. 63(3), 315–389 (1987)

  13. Jacquet, H., Rallis, S.: Uniqueness of linear periods. Compos. Math. 102(1), 65–123 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Jacquet, H., Shalika, J.: Exterior square L-functions. In: Automorphic Forms, Shimura Varieties, and \(L\)-functions, vol. II (Ann Arbor, MI, 1988), Perspect. Math., vol. 11, pp. 143–226. Academic Press, Boston (1990)

  15. Kable, A.C.: Asai \(L\)-functions and Jacquet’s conjecture. Am. J. Math. 126(4), 789–820 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kottwitz, R.E.: Orbital integrals on \({\text{ GL }}_{3}\). Am. J. Math. 102(2), 327–384 (1980)

    Article  MATH  Google Scholar 

  17. Kottwitz, R.E.: Harmonic analysis on reductive \(p\)-adic groups and Lie algebras. In: Harmonic Analysis, The Trace Formula, and Shimura Varieties, Clay Math. Proc., vol. 4, pp. 393–522. American Mathematical Society, Providence (2005)

  18. Lapid, E., Mao, Z.: On a new functional equation for local integrals. In: Automorphic Forms and Related Geometry: Assessing the Legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, pp. 261–294. American Mathematical Society, Providence (2014)

  19. Li, H.: An infinitesimal variant of the Guo–Jacquet trace formula. I: the case of \((GL_{2n, D}, GL_{n, D}\times GL_{n, D})\). Doc. Math. 27, 315–381 (2022)

    Article  MathSciNet  Google Scholar 

  20. Li, H.: An infinitesimal variant of the Guo–Jacquet trace formula, II. Pac. J. Math. 315(1), 151–207 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu, H.: Multiplicity one for the pair \(({\rm GL}(n,D),{\rm GL}(n,E))\). arXiv:2105.10855 (To appear in Transform. Groups)

  22. Offen, O.: On local root numbers and distinction. J. Reine Angew. Math. 652, 165–205 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Prasad, D., Takloo-Bighash, R.: Bessel models for GSp(4). J. Reine Angew. Math. 655, 189–243 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Rader, C., Rallis, S.: Spherical characters on \(\mathfrak{p}\)-adic symmetric spaces. Am. J. Math. 118(1), 91–178 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ramakrishnan, D.: A theorem on GL(\(n\)) á lá Tchebotarev. arXiv:1806.08429 (2018)

  26. Waldspurger, J.-L.: Sur les valeurs de certaines fonctions \(L\) automorphes en leur centre de symétrie. Compos. Math. 54(2), 173–242 (1985)

  27. Xue, H.: Epsilon dichotomy for linear models. Algebra Number Theory 15(1), 173–215 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xue, H.: Orbital integrals on \({\rm GL}_n \times {\rm GL}_n \backslash {\rm GL}_{2n}\). Can. J. Math. 74(3), 858–886 (2022)

    Article  Google Scholar 

  29. Zhang, C.: On the smooth transfer for Guo–Jacquet relative trace formulae. Compos. Math. 151(10), 1821–1877 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, C.: On linear periods. Math. Z. 279(1–2), 61–84 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, W.: Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups. Ann. Math. (2) 180(3), 971–1049 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

HX is partially supported by the NSF grant DMS #1901862 and DMS #2154352. WZ is partially supported by the NSF grant DMS #1901642 and the Simons foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Xue.

Ethics declarations

Conflict of interest

WZ is an associate editor for Peking Mathematical Journal and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Appendices

Appendix A: Convergence of the Elliptic Part

The goal of this appendix is to explain the absolute convergence of the elliptic part of the relative trace formula. We will prove

$$\begin{aligned} \int _{H'(F) \backslash H'({\mathbb {A}}_F)^1} \sum _{x \in S'(F)_{{{\,\textrm{ell}\,}}}} |f'(h^{-1} x {\overline{h}})| \textrm{d}h \end{aligned}$$
(A.1)

is convergent for all \(f \in {\mathcal {S}}(S'({\mathbb {A}}_F))\), where

$$\begin{aligned} H'({\mathbb {A}}_F)^1 = \{ (h_1, h_2) \in H'({\mathbb {A}}_F) \mid |\det h_1 h_2| = 1\}. \end{aligned}$$

This implies the absolute convergence of (2.2). The proof of the absolute convergence of (2.1) is similar.

Let \(P_0\) be the usual upper triangular Borel subgroup of \({{\,\textrm{GL}\,}}_n\) and \(P' = {{\,\textrm{Res}\,}}_{E/F} P_0 \times P_0\) be a minimal parabolic subgroup of \(H'\). Let c be a real number with \(0<c<1\) and \(T_c\) the subset of the diagonal torus in \({{\,\textrm{GL}\,}}_{2n}({\mathbb {R}})\) consisting of

$$\begin{aligned} \{(a_1, \ldots , a_n, b_1, \ldots , b_n) \in ({\mathbb {R}}_{>0})^{2n} \mid a_i a_{i+1}^{-1} \ge c, \ b_i b_{i+1}^{-1} \ge c, \ a_1\cdots a_n b_1 \cdots b_n = 1 \}. \end{aligned}$$

Let \(T_c\) be diagonally embedded in \(H'(F_\infty )\) and identify it with its image. Fix a maximal compact subgroup \({\mathcal {K}}\) of \(H'({\mathbb {A}}_F)\). Then reduction theory gives that there is a compact subgroup \(\omega \subset P'({\mathbb {A}}_F)\), such that \(H'({\mathbb {A}}_F)^1 = H'(F) {\mathcal {G}}\) and

$$\begin{aligned} {\mathcal {G}}= \{ pak \mid p \in \omega , \ a \in T_c, \ k \in {\mathcal {K}}\}. \end{aligned}$$

Thus we only need to prove that

$$\begin{aligned} \int _{\omega } \int _{T_c} \int _{{\mathcal {K}}} \sum _{x \in S'(F)_{{{\,\textrm{ell}\,}}}} |f'((pak)^{-1} x ({\overline{pak}}))| \delta _{P'}(a)^{-1} \textrm{d}k \textrm{d}a \textrm{d}p \end{aligned}$$

is absolutely convergent. By the definition of \(T_c\), there is a compact subset \(\Omega \) of \(H'({\mathbb {A}}_F)\) such that if \(p \in \omega \), \(a \in T_c\), \(k \in {\mathcal {K}}\), then \(a^{-1}pak \in \Omega \). It follows that we only need to prove that

$$\begin{aligned} \int _{T_c} \sum _{x \in S'(F)_{{{\,\textrm{ell}\,}}}} |f'(a^{-1} x a)| \delta _{P'}(a)^{-1} \textrm{d}a \end{aligned}$$

is absolutely convergent for all Schwartz functions \(f'\) on \(S'({\mathbb {A}}_F)\). It is enough to consider \(f' = \bigotimes _v f'_v\), where \(f'_{v}\) is a Schwartz function on \(S'(F_v)\). Since \(f'_v\) is compactly supported if \(v \not \mid \infty \) and \(T_c \subset H'(F_v)\), we just need to prove that

$$\begin{aligned} \int _{T_c} \sum _{x \in S'(L)_{{{\,\textrm{ell}\,}}}} |f'_\infty (a^{-1} x a)| \delta _{P'}(a)^{-1} \textrm{d}a \end{aligned}$$
(A.2)

is absolutely convergent for any Schwartz function \(f'_\infty \) on \(S'(F_\infty )\) and any fractional ideal L of \({\mathfrak {o}}_F\). Note that L is discrete in \(F_\infty \).

We fix some notations. Let \(v\mid \infty \) be an infinite place we write \(|\cdot |\) for the usual absolute value. If \(x = (x_v) \in F_\infty \) we write \(|x|\) for \(\max _{v \mid \infty } |x_v|\). If \(X = (x_{ij}) \in M_n(F_\infty )\), then we write \(\Vert X\Vert = \max _{ij} |x_{ij}|\).

Let us divide the integral into two pieces depending on \(a_1\cdots a_n >1\) or not. We will treat the case \(a_1 \cdots a_n>1\). The case \(a_1 \cdots a_n<1\) can be handled in exactly the same way by noting that \(b_1 \cdots b_n >1\) under this assumption.

From now on assume that \(a_1 \cdots a_n >1\). Then \(b_1 \cdots b_n = (a_1 \cdots a_n)^{-1}<1\).

Since L is a fractional ideal, there is a constant \(c_L>0\) such that if \(x \in S'(L)\) and u is a nonzero entry of x then \(|u| \ge c_L\). This is where the discreteness of L in \(F_\infty \) is used.

We write \(x \in S'(F_\infty )\) as \(\tiny \begin{pmatrix} A &{}\quad B \\ C &{}\quad D \end{pmatrix}\). Fix a positive polynomial \(P_1\) such that

$$\begin{aligned} P_1(x) \ge \max \{ \Vert A\Vert , \Vert B\Vert , \Vert C\Vert , \Vert D\Vert \}. \end{aligned}$$

Here polynomial means that we view \(S'(F_\infty )\) as a real manifold and a \(P_1\) is a real positive polynomial, in other words, if \(a_{ij}\) is an entry of A, then both \(a_{ij}\) and \(\overline{a_{ij}}\) might appear in the polynomial \(P_1\).

If \(x = \tiny \begin{pmatrix} A &{}\quad B \\ C &{}\quad D \end{pmatrix} \in S'(F_\infty )_{{{\,\textrm{ell}\,}}}\), we write \(A = (x_{ij})\). Since the characteristic polynomial of \(A {\overline{A}}\) is irreducible over F, for every \(i_0 = 1, \ldots , n-1\), there is a \(j \ge i_0+1\) and \(i \le i_0\) such that \(x_{ji} \not =0\) (for otherwise A is contained in a proper parabolic subgroup of \({{\,\textrm{GL}\,}}_n(E)\)). Thus \(|x_{ji}| \ge c_L\). Something similar holds for the entries of D. This is where the condition “elliptic” is used.

By the choice of \(P_1\) we have

$$\begin{aligned} P_1(a^{-1}xa) \ge |a_j^{-1} x_{ji} a_i| \ge c_L a_i a_j^{-1}. \end{aligned}$$

Since \(a \in T_c\) we have

$$\begin{aligned} a_i \ge c a_{i+1} \ge \cdots \ge c^{i_0-i} a_{i_0}, \quad a_j^{-1} \ge c a_{j-1}^{-1} \ge \cdots \ge c^{j-i_0-1} a_{i_0+1}^{-1}. \end{aligned}$$

Therefore

$$\begin{aligned} P_1(a^{-1} x a) \ge c_L c^{j-i-1} a_{i_0} a_{i_0+1}^{-1} \ge c_L c^{n-2} a_{i_0} a_{i_0+1}^{-1}. \end{aligned}$$
(A.3)

Note that we used the fact that \(0<c<1\). So we obtain

$$\begin{aligned} a_n^{-1} = (a_1 \cdots a_n)^{-\frac{1}{n}} \prod _{i=1}^{n-1} (a_i a_{i+1}^{-1})^{\frac{i}{n}} \le (a_1 \cdots a_n)^{-\frac{1}{n}} \left( c_L^{-1} c^{-(n-2)} P_1(a^{-1}xa) \right) ^{\frac{n-2}{2}}, \end{aligned}$$

and

$$\begin{aligned} a_1 = (a_1 \cdots a_n)^{\frac{1}{n}} \prod _{i=1}^{n-1} (a_i a_{i+1}^{-1})^{\frac{n-i}{n}} \le (a_1 \cdots a_n)^{\frac{1}{n}} \left( c_L^{-1} c^{-(n-2)} P_1(a^{-1}xa) \right) ^{\frac{n-2}{2}}. \end{aligned}$$

Similarly by considering D, we conclude

$$\begin{aligned} P_1(a^{-1} x a) \ge c_L c^{n-2} b_{i_0} b_{i_0+1}^{-1}, \end{aligned}$$
(A.4)

and

$$\begin{aligned}{} & {} b_n^{-1} \le (b_1 \cdots b_n)^{-\frac{1}{n}} \left( c_L^{-1} c^{-(n-2)} P_1(a^{-1}xa) \right) ^{\frac{n-2}{2}}, \\{} & {} b_1 \le (b_1 \cdots b_n)^{\frac{1}{n}} \left( c_L^{-1} c^{-(n-2)} P_1(a^{-1}xa) \right) ^{\frac{n-2}{2}}. \end{aligned}$$

For any \(i, j = 1, \ldots , n\) we also have

$$\begin{aligned} P_1(a^{-1}xa) \ge |a_i^{-1} x_{ij} a_j|, \end{aligned}$$

and thus

$$\begin{aligned} |x_{ij}|\le & {} a_i a_j^{-1} P_1(a^{-1} xa) \le c^{-(i-1) - (n-j)} a_1 a_n^{-1}P_1(a^{-1} x a) \nonumber \\\le & {} c^{-(2n-2)} \left( c_L^{-1} c^{-(n-2)} P_1(a^{-1} x a) \right) ^{n-2}. \end{aligned}$$
(A.5)

Write \(C = (z_{ij})\), \(D = (w_{ij})\). Similar considerations also give

$$\begin{aligned} \begin{aligned} |z_{ij}|&\le (a_1 \cdots a_n)^{-\frac{1}{n}} (b_1 \cdots b_n)^{\frac{1}{n}} c^{-(2n-2)} \left( c_L^{-1} c^{-(n-2)} P_1(a^{-1} x a) \right) ^{n-2}\\&= (a_1 \cdots a_n)^{-\frac{2}{n}} c^{-(2n-2)} \left( c_L^{-1} c^{-(n-2)} P_1(a^{-1} x a) \right) ^{n-2}, \end{aligned} \end{aligned}$$
(A.6)

and

$$\begin{aligned} |w_{ij}| \le a_i a_j^{-1} P_1(a^{-1} x a) \le c^{-(2n-2)} \left( c_L^{-1} c^{-(n-2)} P_1(a^{-1} x a) \right) ^{n-2}. \end{aligned}$$
(A.7)

To summarize, multiplying the inequalities (A.5), (A.6) and (A.7), we obtain a positive polynomial function P on \(S'(F_\infty )\) such that

$$\begin{aligned} \Vert A\Vert \Vert C\Vert \Vert D\Vert \le (a_1\cdots a_n)^{-\frac{2}{n}} P(a^{-1} x a). \end{aligned}$$
(A.8)

Let us now fix a positive homogeneous polynomial Q in \(M_n(F_\infty )\) of a large degree M. Consider

$$\begin{aligned} \phi (x) = f'_{\infty }(x) Q(B). \end{aligned}$$

This is still a Schwartz function on \(S'(F_{\infty })\). Then

$$\begin{aligned} (A.2) = \int \sum _{x \in S'(L)_{{{\,\textrm{ell}\,}}}} \phi (a^{-1} x a) (a_1 \cdots a_n)^{2M} Q(B)^{-1}\delta _{P'}(a)^{-1} \textrm{d}a, \end{aligned}$$

where as before we write each \(x = \tiny \begin{pmatrix} A &{}\quad B \\ C &{}\quad D \end{pmatrix}\).

Since \(\phi \) is Schwartz, it is bounded by the reciprocal of any polynomial and in particular by \(P^{-N}\) when N is large enough, thus by (A.8) we have

$$\begin{aligned} \begin{aligned} (A.2)&\le \int \sum _{x \in S'(L)_{{{\,\textrm{ell}\,}}}} (\Vert A\Vert \Vert C\Vert \Vert D\Vert )^{-N} (a_1 \cdots a_n)^{\frac{-2N}{n}} (a_1 \cdots a_n)^{2M} Q(B)^{-1} \delta _{P'}(a)^{-1} \textrm{d}a\\&= \sum _{x \in S'(L)_{{{\,\textrm{ell}\,}}}} (\Vert A\Vert \Vert C\Vert \Vert D\Vert )^{-N} Q(B)^{-1} \times \int (a_1 \cdots a_n)^{\frac{-2N}{n}} (a_1 \cdots a_n)^{2M} \delta _{P'}(a)^{-1} \textrm{d}a. \end{aligned} \end{aligned}$$

Here N is a sufficiently large real number, and the integration is over \(a \in T_c\) and \(a_1 \cdots a_n >1\). The point is that the variables in the integral, i.e. \(a_1, \ldots , a_n, b_1, \ldots , b_n\), and the variables in the sum, i.e. \(x =\tiny \begin{pmatrix} A &{}\quad B \\ C &{}\quad D \end{pmatrix}\), are separated. Thus when \(N \gg M \gg 0\), both the sum and the integral are convergent. This proves the convergence of (A.2) and hence the absolute convergence of (2.2).

Appendix B: Elliptic Representations

The goal of this appendix is to sketch a proof of Proposition 3.4. To simplify notation, we fix in this subsection a nonarchimedean nonsplit place v of F and suppress it from all notation. Thus F stands for a nonarchimedean local field of characteristic zero. To shorten notation we also write H for its group of F-points H(F). The equalities in the proof usually depend on the choice of the measures. But such choices are not essential to the final result. Thus we should interpret the equalities in the proof as equalities up to a nonzero constant depending only the choice of the measures.

1.1 B.1 Results on Orbital Integrals

First we need some results on the nilpotent orbital integrals and Shalika germ. Let \({\mathfrak {s}}\) be the tangent space of S at 1, with an action of H by conjugation. An element \(x \in {\mathfrak {s}}\) is called regular semisimple if \(H_x\) is a torus of dimension n, and it is called elliptic if in addition \(H_x\) is an elliptic torus modulo the split center of H. Regular semisimple orbital integrals have been defined and studied in [29]. An H-orbit in \({\mathfrak {s}}\) is called nilpotent if its closure contains 0. Nilpotent orbital integrals have been defined in [10]. In particular if \({\mathcal {O}}\) is an nilpotent orbit in \({\mathfrak {s}}\), it is proved in [10] that the integral

$$\begin{aligned} \int _{{\mathcal {O}}} f(x) \textrm{d}x, \quad f\in {\mathcal {S}}({\mathfrak {s}}), \end{aligned}$$

is absolutely convergent, where \(\textrm{d}x\) is an invariant Radon measure on \({\mathcal {O}}\). Moreover it is proved that the Fourier transform \(\widehat{\mu _{{\mathcal {O}}}}\) of the distribution \(\mu _{{\mathcal {O}}}\) is a locally integrable function on \({\mathfrak {s}}\). If \({\mathcal {O}}= \{0\}\) is the smallest nilpotent orbit, then obviously \(\widehat{\mu _{{\mathcal {O}}}}(X)\) is a nonzero constant. More importantly \(\mu _{{\mathcal {O}}}\) and \(\widehat{\mu _{{\mathcal {O}}}}\) have the following homogeneity property. If \(t \in F^{\times }\), then

$$\begin{aligned} \mu _{{\mathcal {O}}}(f_{t}) = |t|^{\dim {\mathcal {O}}} \mu _{{\mathcal {O}}}(f), \quad f_t(X) = f(t^{-1}X). \end{aligned}$$

This follows from the explicit formula for \(\mu _{{\mathcal {O}}}\) given in [10, Proposition 5.1]. Taking Fourier transform we conclude that

$$\begin{aligned} \widehat{\mu _{{\mathcal {O}}}}(f_t) = |t|^{2n^2 - \dim {\mathcal {O}}} \widehat{\mu _{{\mathcal {O}}}}(f). \end{aligned}$$

The most important point is that \(\dim {\mathcal {O}}< n^2\) for all \({\mathcal {O}}\), and thus

$$\begin{aligned} \dim {\mathcal {O}}< 2n^2 - \dim {\mathcal {O}}' \end{aligned}$$
(B.1)

for any two nilpotent orbits \({\mathcal {O}}\) and \({\mathcal {O}}'\).

As in the classical situation of Harish-Chandra, we have the Shalika germs. Let \(\exp : {\mathfrak {s}}\rightarrow S\) be the exponential map, defined in an H-invariant neighbourhood \(0 \in {\mathfrak {s}}\). For any \(f \in {\mathcal {S}}(G)\), we define in an H-invariant neighbourhood of \(0 \in {\mathfrak {s}}\) a function \(f_{\natural }\) by requiring that

$$\begin{aligned} \int _H f(gh) \chi (gh)^{-1} \textrm{d}h = f_{\natural }(X) \end{aligned}$$

if \(g \theta (g)^{-1} = \exp X\). There is a unique H-invariant real valued function \(\Gamma _{\mathcal {O}}\) on the regular semisimple locus of \({\mathfrak {s}}\) for each nilpotent orbit \({\mathcal {O}}\) with the following properties.

  1. (1)

    For any \(f \in {\mathcal {S}}({\mathfrak {s}})\), there is an H-invariant neighbourhood \(U_f\) of \(0 \in {\mathfrak {s}}\) such that

    $$\begin{aligned} O^G(g, f) = \sum _{{\mathcal {O}}} \Gamma _{\mathcal {O}}(X) \mu _{{\mathcal {O}}}(f_{\natural }) \end{aligned}$$
    (B.2)

    for all regular semisimple \(g \in U_f\), such that \(g\theta (g)^{-1} = \exp (X)\).

  2. (2)

    For all \(t \in F^\times \) and all regular semisimple X, we have

    $$\begin{aligned} \Gamma _{{\mathcal {O}}}(tX) = |t|^{- \dim {\mathcal {O}}} \Gamma _{{\mathcal {O}}}(X). \end{aligned}$$

Lemma B.1

The Shalika germs \(\Gamma _{{\mathcal {O}}}\) are linearly independent. They are not identically zero in any neighbourhood of 0. If \({\mathcal {O}}= \{0\}\) is the minimal nilpotent orbit, then \(\Gamma _0(X) = 0\) if X is not elliptic in \({\mathfrak {s}}\).

Proof

The linear independence is proved by exactly the same argument as in the classical case of Harish-Chandra. The key to this argument is the inequality (B.1), and the rest of the argument is essentially formal, cf. [17, Section 27] and [28, Section 7]. The fact that \(\Gamma _0(X) = 0\) if X is not elliptic is proved using parabolic descent [29, Subsection 6.1] and the homogeneity property of \(\Gamma _{{\mathcal {O}}}\)’s. \(\square \)

1.2 B.2 Characters of Supercuspidal Representations

Now we recall that by [3, Proposition 4.2.1], in the case \(\pi \) being supercuspidal, up to some nonzero constant depending only on the choice of the measures and the linear form \(\ell \), we have

$$\begin{aligned} \ell (v) \overline{\ell (w)} = \int _{Z \backslash H} \langle v, \pi (h) w \rangle \chi (h)^{-1} \textrm{d}h \end{aligned}$$
(B.3)

for all \(v, w \in \pi \). Thus if \(\varphi \in {\mathcal {S}}(G)\) then

$$\begin{aligned} J_{\pi }(\varphi ) = \sum _v \int _{Z \backslash H} \langle \pi (\varphi ) v, \pi (h) v \rangle \chi (h)^{-1} \textrm{d}h, \end{aligned}$$

where the sum runs over an orthonormal basis of \(\pi \). By [24, Corollary 5.2] the distribution \(J_{\pi }\) agrees with a locally constant function on the regular semisimple locus in G. We denote this function by \(\Theta _{\pi }\).

Recall from (2.5) that we have defined a transfer factor

$$\begin{aligned} \kappa ^G(g) = \chi (A), \quad g^{-1} = \begin{pmatrix} A &{}\quad * \\ * &{}\quad * \end{pmatrix} \end{aligned}$$

for all regular semisimple \(g \in G\). We put \({\widetilde{\Theta }}_{\pi }(g) = \kappa ^G(g) \Theta _{\pi }(g)\). Then \({\widetilde{\Theta }}_{\pi }\) is left and right H-invariant, and we can view it as a function on S which is H-conjugate invariant. By [24, Theorem 7.11], if X is in a small neighbourhood of \(0 \in {\mathfrak {s}}\), \(g\in G\), \(g \theta (g)^{-1} = \exp X\), we have

$$\begin{aligned} {\widetilde{\Theta }}_{\pi } (g) = \sum _{{\mathcal {O}}} c_{{\mathcal {O}}} \widehat{\mu _{{\mathcal {O}}}}(X). \end{aligned}$$
(B.4)

The case treated in [24] does not involve the character, but the same argument goes through without change in our setup.

Lemma B.2

Let \(v, w \in \pi \), and \(f(g) = \langle v, \pi (g) w \rangle \) be the matrix coefficient. Then we have

$$\begin{aligned} \kappa ^G(g) O^G(g, f) = {\widetilde{\Theta }}_\pi (g) \int _{Z \backslash H} f(h) \chi (h)^{-1} \textrm{d}h, \end{aligned}$$
(B.5)

for all elliptic g in G.

Proof

It is enough to prove that for any \(\varphi \in {\mathcal {S}}(G)\) supported in the elliptic locus, we have

$$\begin{aligned} \int _{G} \varphi (g) \kappa ^G(g) O^G(g, f) \textrm{d}g = J_\pi (\varphi \kappa ^G) \int _{Z \backslash H} f(h) \chi (h)^{-1}\textrm{d}h. \end{aligned}$$
(B.6)

Though \(\kappa ^G\) is not defined on all G, as \(\varphi \) is locally constant and compactly supported in the elliptic locus, \(\varphi \kappa ^G \in {\mathcal {S}}(G)\) and \(J_\pi (\varphi \kappa ^G)\) makes sense.

Let us first note that because \((H \times H)_g\) is an elliptic torus modulo the center of G, up to some nonzero constant depending only on the choice of the measures, the orbital integral of f equals

$$\begin{aligned} \kappa ^G(g) \int _{Z \backslash H \times Z \backslash H} f(h_1^{-1} g h_2) \chi (h_1^{-1}h_2)^{-1} \textrm{d}h_1 \textrm{d}h_2. \end{aligned}$$

As \(\varphi \) is supported on the elliptic locus, we have

$$\begin{aligned}{} & {} \int _{G} \varphi (g) \kappa ^G(g) O^G(g, f) \textrm{d}g \\{} & {} \quad = \int _G \int _{Z \backslash H \times Z \backslash H} \varphi (g) \kappa ^G(g) f(h_1^{-1} g h_2) \chi (h_1^{-1}h_2)^{-1} \textrm{d}h_1 \textrm{d}h_2 \textrm{d}g. \end{aligned}$$

The right hand side of this integral is absolutely convergent. Thus we may change the order of integration and conclude that this integral equals

$$\begin{aligned} \int _{Z \backslash H \times Z \backslash H} \langle v, \pi (h_1^{-1}) \pi (\overline{\varphi \kappa ^G}) \pi (h_2) w \rangle \chi (h_1^{-1} h_2)^{-1} \textrm{d}h_1 \textrm{d}h_2. \end{aligned}$$
(B.7)

Since \(\pi \) is admissible, we may find elements \(v_1, \ldots , v_r\) and \(w_1, \ldots , w_r\) in \(\pi \) such that

$$\begin{aligned} \pi (\varphi \kappa ^G) v_0 = \sum _{i = 1}^r \langle v_0, v_i \rangle w_i, \end{aligned}$$

for all \(v_0 \in \pi \). It then follows by (B.3) that

$$\begin{aligned} (B.7)= \sum _{i= 1}^r \ell (v) \overline{\ell (v_i)} \ell (w_i) \overline{\ell (w)}. \end{aligned}$$

We also have

$$\begin{aligned} J_{\pi }(\varphi \kappa ^G) = \sum _u \ell (\pi (\varphi \kappa ^G)u) \overline{\ell (u)} = \sum _u \sum _{i=1}^r \langle u, v_i \rangle \ell (w_i) \overline{\ell (u)} =\sum _{i=1}^r \ell (w_i) \overline{\ell (v_i)}. \end{aligned}$$

Thus (B.6) follows by another application of (B.3). \(\square \)

Proof of Proposition 3.4

Let X be in a small neighbourhood of \(0 \in {\mathfrak {s}}\), \(g\in G\), \(g \theta (g)^{-1} = \exp X\). The character expansion (B.4) gives

$$\begin{aligned} {\widetilde{\Theta }}_{\pi } (g) = \sum _{{\mathcal {O}}} c_{{\mathcal {O}}} \widehat{\mu _{{\mathcal {O}}}}(X). \end{aligned}$$

Note that X is elliptic if and only if g is elliptic. Since \({\mathcal {O}}= \{0\}\) is the only nilpotent orbit with \(\widehat{\mu _{{\mathcal {O}}}}(tX) = \widehat{\mu _{{\mathcal {O}}}}(X)\) for all \(X \in {\mathfrak {s}}\) and \(t \in F^\times \), to show that \({\widetilde{\Theta }}_{\pi }(g) \not =0\) for some elliptic \(g \in G\) which is sufficiently close to 1, we only need to show that \(c_0 \not =0\).

We find a matrix coefficient f such that

$$\begin{aligned} \int _{Z \backslash H} f(h) \chi (h)^{-1} \textrm{d}h \not =0. \end{aligned}$$

For this f we consider the expansion of both sides of (B.5) when g is close to 1 and is elliptic. We have

$$\begin{aligned} \sum _{{\mathcal {O}}} \Gamma _{{\mathcal {O}}}(X) \mu _{{\mathcal {O}}}(f_{\natural }) = \sum _{{\mathcal {O}}} c_{{\mathcal {O}}} \widehat{\mu _{{\mathcal {O}}}}(X) \times \int _{Z \backslash H} f(h) \chi (h)^{-1} \textrm{d}h. \end{aligned}$$

The only terms on both sides of the expansion that are invariant under the scaling \(X \rightarrow tX\) are those corresponding to \({\mathcal {O}}= 0\). Thus by the homogeneity property of \(\Gamma _{{\mathcal {O}}}\) and \(\widehat{\mu _{{\mathcal {O}}}}\), we conclude that

$$\begin{aligned} \Gamma _0(X) \mu _0(f_{\natural }) = c_{0} \widehat{\mu _{0}}(X) \times \int _{Z \backslash H} f(h) \chi (h)^{-1} \textrm{d}h. \end{aligned}$$

By our choice of f we have

$$\begin{aligned} \mu _0(f_{\natural }) = \int _{Z \backslash H} f(h) \chi (h)^{-1} \textrm{d}h \not =0. \end{aligned}$$

If \(c_0 = 0\), then \(\Gamma _0(X) = 0\) if X is elliptic in a neighbourhood of 0. By Lemma B.1, \(\Gamma _0(Y) = 0\) if Y is not elliptic and hence is identically zero in a neighbourhood of 0. This is impossible by Lemma B.1. Therefore \(c_0 \not =0\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Zhang, W. Twisted Linear Periods and a New Relative Trace Formula. Peking Math J (2023). https://doi.org/10.1007/s42543-023-00073-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42543-023-00073-5

Keywords

Mathematics Subject Classification

Navigation