Skip to main content

Advertisement

Log in

Medicinal plants, phytoconstituents and traditional formulation as potential therapies for SARS-CoV-2: a review update

  • Review Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

The novel coronavirus known as SARS-CoV-2 is the causative agent of the COVID-19 pandemic resulting in more than 6.9 million deaths worldwide. Currently, the therapeutic strategies only recommend various available vaccines as the preventive measure against COVID-19 with no established effective preventive or therapeutic drugs so far reported. The various herbal derivatives, and their secondary metabolites were reported with varying range of efficacy. Accordingly this review of literature has discussed in detail the insight of the plant derived formulations against SARS-CoV-2. This in-silico analysis has encompassed the extensive doctrine data base search of google scholar, pubmed, science direct and scopus with specific search using keywords “inhibitory role of medicinal plants/ bioactive metabolites/ traditional herbal medicine/ plant products/ secondary metabolites/ phytoconstituents against SARS-CoV-2/COVID-19”. Among the yielded search of 1539 literature, 107 were found relevant and analysed in the present review. Various medicinal plants and their natural products were studied and reported for their inhibitory activity against SARS-CoV-2 after their rigorous testing in various clinical trials. Promising result were reported in Ashwagandha (Withania somnifera), Giloy (Tinospora cordifolia), Neem (Azadirachta indica) Pipli (Piper longum), Haldi (Curcuma longa) and Tulsi (Ocimum sanctum) and phytoconstituents like curcumin, colchicine, chloroquine, shikimic acid, quercetin, nimbolin, tinosponone, withanoside, piperolactam verimol, vicenin and myricetin. Various concoctions from these medicinal plants and their phytoconstituents have been reported of virucidal/ virustatic properties against SARS-CoV-2 along with immunomodulatory, anti-inflammatory, anti-oxidant and antipyretic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aanouz I et al (2020) ‘Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations’, Journal of Biomolecular Structure and Dynamics, pp. 1–9. Available at: https://doi.org/10.1080/07391102.2020.1758790

  • Abdelli I et al (2020) ‘In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria’, Journal of biomolecular structure & dynamics, pp. 1–14. Available at: https://doi.org/10.1080/07391102.2020.1763199

  • Ahmad S et al (2021) ‘Indian Medicinal Plants and Formulations and Their Potential Against COVID-19-Preclinical and Clinical Research’, Frontiers in pharmacology, 11, p. 578970. Available at: https://doi.org/10.3389/fphar.2020.578970

  • Al-kuraishy HM et al (2022) ‘Traditional herbs against COVID-19: back to old weapons to combat the new pandemic’, European Journal of Medical Research, 27(1), p. 186. Available at: https://doi.org/10.1186/s40001-022-00818-5

  • Alagu Lakshmi S et al (2020) ‘Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach’, Journal of Biomolecular Structure and Dynamics, pp. 1–16. Available at: https://doi.org/10.1080/07391102.2020.1778537

  • Alam S et al (2021) ‘Traditional Herbal Medicines, Bioactive Metabolites, and Plant Products Against COVID-19: Update on Clinical Trials and Mechanism of Actions.’, Frontiers in pharmacology, 12, p. 671498. Available at: https://doi.org/10.3389/fphar.2021.671498

  • Alrasheid AA, Babiker MY, Awad TA (2021) ‘Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis’, In Silico Pharmacology, 9(1), p. 10. Available at: https://doi.org/10.1007/s40203-020-00073-8

  • Anand U et al (2019) ‘A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery’, Metabolites, 9(11), p. 258. Available at: https://doi.org/10.3390/metabo9110258

  • Ang L et al (2020) ‘Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines’, Integrative Medicine Research, 9(2), p. 100407. Available at: https://doi.org/10.1016/j.imr.2020.100407

  • Aouidate A et al (2020) ‘Identification of a novel dual-target scaffold for 3CLpro and RdRp proteins of SARS-CoV-2 using 3D-similarity search, molecular docking, molecular dynamics and ADMET evaluation’, Journal of Biomolecular Structure and Dynamics, pp. 1–14. Available at: https://doi.org/10.1080/07391102.2020.1779130

  • Atanasov AG et al (2015) ‘Discovery and resupply of pharmacologically active plant-derived natural products: A review’, Biotechnology advances. 2015/08/15, 33(8), pp. 1582–1614. Available at: https://doi.org/10.1016/j.biotechadv.2015.08.001

  • Azim KF et al (2020) ‘Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach’, Informatics in Medicine Unlocked. 2020/06/09, 20, p. 100367. Available at: https://doi.org/10.1016/j.imu.2020.100367

  • Balkrishna A et al (2020) ‘Calcio-Herbal Medicine Divya-Swasari-Vati Ameliorates SARS-CoV-2 Spike Protein-Induced Pathological Features and Inflammation in Humanized Zebrafish Model by Moderating IL-6 and TNF-α Cytokines’, Journal of inflammation research, 13, pp. 1219–1243. Available at: https://doi.org/10.2147/JIR.S286199

  • Balkrishna A, Khandrika L, Varshney A (2021) ‘Giloy Ghanvati (Tinospora cordifolia (Willd.) Hook. f. and Thomson) Reversed SARS-CoV-2 Viral Spike-Protein Induced Disease Phenotype in the Xenotransplant Model of Humanized Zebrafish’, Frontiers in Pharmacology, 12. Available at: https://doi.org/10.3389/fphar.2021.635510

  • Borkotoky S, Banerjee M (2020) ‘A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem)’, Journal of Biomolecular Structure and Dynamics, pp. 1–11. Available at: https://doi.org/10.1080/07391102.2020.1774419

  • Calder PC (2020) ‘Nutrition, immunity and COVID-19’, BMJ Nutrition, Prevention & Health [Preprint]. Available at: https://doi.org/10.1136/bmjnph-2020-000085

  • Chikhale RV, Gurav SS et al (2020) ‘Sars-cov-2 host entry and replication inhibitors from Indian ginseng: an in-silico approach’, Journal of Biomolecular Structure and Dynamics, pp. 1–12. Available at: https://doi.org/10.1080/07391102.2020.1778539

  • Chikhale RV, Sinha SK et al (2020) ‘In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19’, Journal of Biomolecular Structure and Dynamics, pp. 1–15. Available at: https://doi.org/10.1080/07391102.2020.1784289

  • Chowdhury P (2020) ‘In silico investigation of phytoconstituents from Indian medicinal herb “Tinospora cordifolia (giloy)” against SARS-CoV-2 (COVID-19) by molecular dynamics approach’, Journal of Biomolecular Structure and Dynamics, pp. 1–18. Available at: https://doi.org/10.1080/07391102.2020.1803968

  • Clementi N et al (2021) ‘Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro’, Pharmacological research. 2020/10/20, 163, p. 105255. Available at: https://doi.org/10.1016/j.phrs.2020.105255

  • ClinicalTrials.gov ID NCT04716647 (2021) Feasibility of Ayurveda in Patients With Mild-to-Moderate COVID-19: A Community-Based Participatory Research. Available at: https://www.clinicaltrials.gov/study/NCT04716647

  • ClinicalTrials.gov Identifier : NCT04621903 (2020) A Pilot Study on Efficacy and Safety of Ayurveda Combination in Patients With Mild-to-Moderate COVID-19

  • ClinicalTrials.gov Identifier: NCT04404218 (2020) The Açaí Berry COVID-19 Anti-Inflammation Trial (ACAI)

  • ClinicalTrials.gov Identifier: NCT04542993 (2020) Can SARS-CoV-2 Viral Load and COVID-19 Disease Severity be Reduced by Resveratrol-assisted Zinc Therapy (Reszinate)

  • ClinicalTrials.gov Identifier: NCT04322682 (2021) Colchicine Coronavirus SARS-CoV2 Trial (COLCORONA) (COVID-19)

  • ClinicalTrials.gov Identifier : NCT04377789 (2021) Effect of Quercetin on Prophylaxis and Treatment of COVID-19

  • Costa AN et al (2020) ‘Constituents of buriti oil (Mauritia flexuosa L.) like inhibitors of the SARS-Coronavirus main peptidase: an investigation by docking and molecular dynamics’, Journal of Biomolecular Structure and Dynamics, pp. 1–8. Available at: https://doi.org/10.1080/07391102.2020.1778538

  • Das K (2022) ‘Herbal plants as immunity modulators against COVID-19: A primary preventive measure during home quarantine’, Journal of Herbal Medicine, 32, p. 100501. Available at: https://doi.org/10.1016/j.hermed.2021.100501

  • Das P et al (2020a) ‘In-Silico approach for identification of effective and stable inhibitors for COVID-19 main protease (Mpro) from flavonoid based phytochemical constituents of Calendula officinalis’, Journal of Biomolecular Structure and Dynamics, pp. 1–16. Available at: https://doi.org/10.1080/07391102.2020a.1796799

  • Das S et al (2020b) ‘An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study’, Journal of Biomolecular Structure and Dynamics, pp. 1–11. Available at: https://doi.org/10.1080/07391102.2020b.1763201

  • Dave GS et al (2020) ‘High affinity interaction of Solanum tuberosum and Brassica juncea residue smoke water compounds with proteins involved in coronavirus infection’, Phytotherapy Research [Preprint]. Available at: https://doi.org/10.1002/ptr.6796

  • Davies M et al (2020) ‘Remdesivir in Treatment of COVID-19: A Systematic Benefit-Risk Assessment’, Drug safety, 43(7), pp. 645–656. Available at: https://doi.org/10.1007/s40264-020-00952-1

  • Dermawan D, Prabowo BA, Rakhmadina CA (2021) ‘In silico study of medicinal plants with cyclodextrin inclusion complex as the potential inhibitors against SARS-CoV-2 main protease (M(pro)) and spike (S) receptor’, Informatics in medicine unlocked. 2021/06/24, 25, p. 100645. Available at: https://doi.org/10.1016/j.imu.2021.100645

  • Dutta M et al (2021) ‘Appraisals of the Bangladeshi Medicinal Plant Calotropis gigantea Used by Folk Medicine Practitioners in the Management of COVID-19: A Biochemical and Computational Approach’, Frontiers in molecular biosciences, 8, p. 625391. Available at: https://doi.org/10.3389/fmolb.2021.625391

  • Enmozhi SK et al (2020) ‘Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach’, Journal of Biomolecular Structure and Dynamics, pp. 1–7. Available at: https://doi.org/10.1080/07391102.2020.1760136

  • Frederico ÉHFF et al (2017) ‘ANTI-VIRAL EFFECTS OF MEDICINAL PLANTS IN THE MANAGEMENT OF DENGUE: A SYSTEMATIC REVIEW’, African journal of traditional, complementary, and alternative medicines: AJTCAM, 14(4 Suppl), pp. 33–40. Available at: https://doi.org/10.21010/ajtcam.v14i4S.5

  • Gandhi AJ et al (2020) ‘An Ayurvedic Perspective along with in Silico Study of the Drugs for the Management of Sars-Cov-2’, Journal of Ayurveda and Integrative Medicine [Preprint]. Available at: https://doi.org/10.1016/j.jaim.2020.07.002

  • Ganjhu RK et al (2015) ‘Herbal plants and plant preparations as remedial approach for viral diseases’, Virusdisease. 2015/09/03, 26(4), pp. 225–236. Available at: https://doi.org/10.1007/s13337-015-0276-6

  • Gautam S et al (2020) ‘Immunity against COVID-19: Potential role of Ayush Kwath’, Journal of Ayurveda and Integrative Medicine [Preprint]. Available at: https://doi.org/https://doi.org/10.1016/j.jaim.2020.08.003

  • Ghosh R et al (2020a) ‘Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study’, Journal of Biomolecular Structure and Dynamics, pp. 1–13. Available at: https://doi.org/10.1080/07391102.2020.1779818

  • Ghosh R et al (2020b) ‘Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches’, Journal of Biomolecular Structure and Dynamics, pp. 1–14. Available at: https://doi.org/10.1080/07391102.2020.1802347

  • Gorla US et al (2020) ‘Lead Finding from Selected Flavonoids with Antiviral (SARS-CoV-2) Potentials against COVID-19: An in-silico Evaluation’, Combinatorial Chemistry & High Throughput Screening [Preprint]. Available at: https://doi.org/10.2174/1386207323999200818162706

  • Gupta MK et al (2020a) ‘In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel’, Journal of Biomolecular Structure and Dynamics, pp. 1–11. Available at: https://doi.org/10.1080/07391102.2020a.1751300

  • Gupta S et al (2020b) ‘Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies’, Journal of Biomolecular Structure and Dynamics, pp. 1–12. Available at: https://doi.org/10.1080/07391102.2020b.1776157

  • Gurung AB et al (2020) ‘Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M(pro) enzyme through in silico approach’, Life sciences, 255, p. 117831. Available at: https://doi.org/10.1016/j.lfs.2020.117831

  • Gyebi GA et al (2020) ‘Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): an in silico screening of alkaloids and terpenoids from African medicinal plants’, Journal of Biomolecular Structure and Dynamics, pp. 1–13. Available at: https://doi.org/10.1080/07391102.2020.1764868

  • Hillen HS et al (2020) ‘Structure of replicating SARS-CoV-2 polymerase’, Nature [Preprint]. Available at: https://doi.org/10.1038/s41586-020-2368-8

  • Hoffmann M et al (2020) ‘SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor’, Cell. 2020/03/05, 181(2), pp. 271–280.e8. Available at: https://doi.org/10.1016/j.cell.2020.02.052

  • Huang C et al (2020) ‘Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China’, The Lancet, 395(10223), pp. 497–506. Available at: https://doi.org/10.1016/S0140-6736(20)30183-5

  • Islam R et al (2020) ‘A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2’, Journal of Biomolecular Structure and Dynamics, pp. 1–12. Available at: https://doi.org/10.1080/07391102.2020.1761883

  • Jahan I, Onay A (2020) ‘Potentials of plant-based substance to inhabit and probable cure for the covid-19’, Turkish Journal of Biology [Preprint]. Available at: https://doi.org/10.3906/biy-2005-114

  • Jin Z et al (2020) ‘Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors’, Nature [Preprint]. Available at: https://doi.org/10.1038/s41586-020-2223-y

  • Joshi RS et al (2020a) ‘Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease’, Journal of biomolecular structure & dynamics, pp. 1–16. Available at: https://doi.org/10.1080/07391102.2020a.1760137

  • Joshi T et al (2020b) ‘In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking’, European review for medical and pharmacological sciences [Preprint]. Available at: https://doi.org/10.26355/eurrev_2020b04_21036

  • Kar P et al (2020) ‘Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation’, Journal of Biomolecular Structure and Dynamics, pp. 1–12. Available at: https://doi.org/10.1080/07391102.2020.1780947

  • Kaur V et al (2018) ‘Pharmacotherapeutic potential of phytochemicals: Implications in cancer chemoprevention and future perspectives’, Biomedicine & Pharmacotherapy, 97, pp. 564–586. Available at: https://doi.org/https://doi.org/10.1016/j.biopha.2017.10.124

  • Kiran G et al (2020) ‘In Silico computational screening of Kabasura Kudineer - Official Siddha Formulation and JACOM against SARS-CoV-2 spike protein’, Journal of Ayurveda and integrative medicine, pp. S0975-9476(20)30024–3. Available at: https://doi.org/10.1016/j.jaim.2020.05.009

  • Krupanidhi S et al (2020) ‘Screening of phytochemical compounds of Tinospora cordifolia for their inhibitory activity on SARS-CoV-2: an in silico study’, Journal of Biomolecular Structure and Dynamics, pp. 1–5. Available at: https://doi.org/10.1080/07391102.2020.1787226

  • Kumar A et al (2020a) ‘Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches’, Journal of Biomolecular Structure and Dynamics, pp. 1–11. Available at: https://doi.org/10.1080/07391102.2020a.1772112

  • Kumar S et al (2020b) ‘Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication’, Phytomedicine, p. 153317. Available at: https://doi.org/10.1016/j.phymed.2020b.153317

  • Kumar V et al (2020c) ‘Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity’, Journal of Biomolecular Structure and Dynamics, pp. 1–13. Available at: https://doi.org/10.1080/07391102.2020c.1772108

  • Kumar Singh S, Rajoria K, Sharma S (2020) ‘Principles of Rajayakshma management for COVID-19’, Journal of Ayurveda and Integrative Medicine [Preprint]. Available at: https://doi.org/https://doi.org/10.1016/j.jaim.2020.08.002

  • Kwofie SK et al (2019) ‘Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24’, Computers in Biology and Medicine, 113, p. 103414. Available at: https://doi.org/10.1016/j.compbiomed.2019.103414

  • Kwon S et al (2020) ‘Could herbal medicine (Soshihotang) be a new treatment option for COVID-19?: a narrative review’, Integrative Medicine Research, 9(3), p. 100480. Available at: https://doi.org/10.1016/j.imr.2020.100480

  • Lionis, C. et al. (2021) ‘A mixture of essential oils from three Cretan Aromatic Plants (thyme, Greek sage and Cretan dittany, CAPeo) inhibits SASR-CoV-2 proliferation: in vitroevidence and a Proof-of-Concept intervention study in mild ambulatory COVID-19-pos’,medRxiv, p. 2021.01.11.20248947. Available at: https://doi.org/10.1101/2021.01.11.20248947

  • Lung J et al (2020) ‘The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase’, Journal of medical virology, p. https://doi.org/10.1002/jmv.25761. Available at: https://doi.org/10.1002/jmv.25761

  • Majumder R, Mandal M (2020) ‘Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach’, Journal of Biomolecular Structure and Dynamics, pp. 1–16. Available at: https://doi.org/10.1080/07391102.2020.1817787

  • Marinella MA (2020) ‘Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19’, International journal of clinical practice, pp. e13535–e13535. Available at: https://doi.org/10.1111/ijcp.13535

  • Maurya R, Handa SS (1998) ‘Tinocordifolin, a sesquiterpene from Tinospora cordifolia1R.R.L. communication number 22501’, Phytochemistry, 49(5), pp. 1343–1345. Available at: https://doi.org/https://doi.org/10.1016/S0031-9422(98)00093-4

  • Maurya VK et al (2020) ‘Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor’, VirusDisease, pp. 1–15. Available at: https://doi.org/10.1007/s13337-020-00598-8

  • Mehrbod P et al (2018) ‘South African medicinal plant extracts active against influenza A virus’, BMC complementary and alternative medicine, 18(1), p. 112. Available at: https://doi.org/10.1186/s12906-018-2184-y

  • Morse JS et al (2020) ‘Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV’, Chembiochem: a European journal of chemical biology. 2020/02/25, 21(5), pp. 730–738. Available at: https://doi.org/10.1002/cbic.202000047

  • Mouffouk C et al (2021) ‘Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CL(pro) and PL(pro)), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2)’, European journal of pharmacology. 2020/11/27, 891, p. 173759. Available at: https://doi.org/10.1016/j.ejphar.2020.173759

  • Mpiana PT et al (2020) ‘Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study’, Chemical Physics Letters, 754, p. 137751. Available at: https://doi.org/10.1016/j.cplett.2020.137751

  • Mukherjee PK et al (2022) ‘Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications’, Phytomedicine, 98, p. 153930. Available at: https://doi.org/10.1016/j.phymed.2022.153930

  • Murugan NA, Pandian CJ, Jeyakanthan J (2020) ‘Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials’, Journal of Biomolecular Structure and Dynamics, pp. 1–12. Available at: https://doi.org/10.1080/07391102.2020.1777901

  • Murugesan S et al (2021) ‘Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants - Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) - A molecular docking and simulation study’, Computers in biology and medicine, 136, p. 104683. Available at: https://doi.org/10.1016/j.compbiomed.2021.104683

  • Narkhede RR et al (2020) ‘Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences’, Natural products and bioprospecting, pp. 1–10. Available at: https://doi.org/10.1007/s13659-020-00253-1

  • Nasir Ahmed M, Hughes K (2022) ‘Role of ethno-phytomedicine knowledge in healthcare of COVID-19: advances in traditional phytomedicine perspective’, Beni-Suef University Journal of Basic and Applied Sciences, 11(1), p. 96. Available at: https://doi.org/10.1186/s43088-022-00277-1

  • Natesh J et al (2021) ‘Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation’, Computers in biology and medicine. 2021/04/20, 133, p. 104383. Available at: https://doi.org/10.1016/j.compbiomed.2021.104383

  • Ni L et al (2020) ‘Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19’, Frontiers of medicine. 2020/03/13, 14(2), pp. 210–214. Available at: https://doi.org/10.1007/s11684-020-0757-x

  • Ogunrinola OO, Kanmodi RI, Ogunrinola OA (2022) ‘Medicinal plants as immune booster in the palliative management of viral diseases: A perspective on coronavirus’, Food Frontiers, 3(1), pp. 83–95. Available at: https://doi.org/10.1002/fft2.107

  • Oso BJ, Adeoye AO, Olaoye IF (2020) ‘Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases’, Journal of Biomolecular Structure and Dynamics, pp. 1–12. Available at: https://doi.org/10.1080/07391102.2020.1813630

  • Pandey A et al (2020) ‘Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements’, Life Sciences [Preprint]. Available at: https://doi.org/10.1016/j.lfs.2020.117883

  • Pandeya KB, Ganeshpurkar A, Mishra MK (2020) ‘Natural RNA dependent RNA polymerase inhibitors: Molecular docking studies of some biologically active alkaloids of Argemone mexicana’, Medical Hypotheses. 2020/06/01, 144, p. 109905. Available at: https://doi.org/10.1016/j.mehy.2020.109905

  • Peng X et al (2020) ‘Transmission routes of 2019-nCoV and controls in dental practice’, International Journal of Oral Science, 12(1), p. 9. Available at: https://doi.org/10.1038/s41368-020-0075-9

  • Polansky H, Lori G (2020) ‘Coronavirus disease 2019 (COVID-19): first indication of efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 infection’, International journal of antimicrobial agents. 2020/04/10, 55(6), p. 105971. Available at: https://doi.org/10.1016/j.ijantimicag.2020.105971

  • Popoola TD et al (2022) ‘West African medicinal plants and their constituent compounds as treatments for viral infections, including SARS-CoV-2/COVID-19’, DARU Journal of Pharmaceutical Sciences, 30(1), pp. 191–210. Available at: https://doi.org/10.1007/s40199-022-00437-9

  • Prajapat M et al (2020) ‘Drug targets for corona virus: A systematic review’, Indian journal of pharmacology. 2020/03/11, 52(1), pp. 56–65. Available at: https://doi.org/10.4103/ijp.IJP_115_20

  • Prasanth DSNBK et al (2020) ‘In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2’, Journal of Biomolecular Structure and Dynamics, pp. 1–15. Available at: https://doi.org/10.1080/07391102.2020.1779129

  • Rolta R et al (2020) ‘In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: an approach to prevent virus assembly’, Journal of Biomolecular Structure and Dynamics, pp. 1–18. Available at: https://doi.org/10.1080/07391102.2020.1804457

  • Runfeng L et al (2020) ‘Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2)’, Pharmacological Research, 156, p. 104761. Available at: https://doi.org/10.1016/j.phrs.2020.104761

  • Selvaraj C et al (2020) ‘Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19’, Journal of Biomolecular Structure and Dynamics, pp. 1–12. Available at: https://doi.org/10.1080/07391102.2020.1778535

  • Sharma P, Shanavas A (2020) ‘Natural derivatives with dual binding potential against SARS-CoV-2 main protease and human ACE2 possess low oral bioavailability: a brief computational analysis’, Journal of Biomolecular Structure and Dynamics, pp. 1–12. Available at: https://doi.org/10.1080/07391102.2020.1794970

  • Sharma A et al (2020) ‘In-silico screening of plant-derived antivirals against main protease, 3CLpro and endoribonuclease, NSP15 proteins of SARS-CoV-2’, Journal of Biomolecular Structure and Dynamics, pp. 1–15. Available at: https://doi.org/10.1080/07391102.2020.1808077

  • Shivanika C et al (2020) ‘Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease’, Journal of Biomolecular Structure and Dynamics, pp. 1–27. Available at: https://doi.org/10.1080/07391102.2020.1815584

  • Shree P et al (2020) ‘Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study’, Journal of Biomolecular Structure and Dynamics, pp. 1–14. Available at: https://doi.org/10.1080/07391102.2020.1810778

  • Singh P et al (2020a) ‘Potential Inhibitors for SARS-CoV-2 and Functional Food Components as Nutritional Supplement for COVID-19: A Review’, Plant Foods for Human Nutrition, 75(4), pp. 458–466. Available at: https://doi.org/10.1007/s11130-020-00861-9

  • Singh S et al (2020b) ‘Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis’, Journal of Biomolecular Structure and Dynamics, pp. 1–16. Available at: https://doi.org/10.1080/07391102.2020b.1796810

  • Singh P et al (2021a) ‘In silico identification of promising inhibitor against RNA-dependent RNA polymerase target of SARS-CoV-2’, Molecular biology research communications, 10(3), pp. 131–140. Available at: https://doi.org/10.22099/mbrc.2021a.40367.1621

  • Singh P, Tripathi KM, Shrivastava R (2021b) In silico identification of linear B-cell epitope in Coronavirus 2019 (SARS-CoV-2) surface glycoprotein: a prospective towards peptide vaccine. Minerva Biotechnol Biomol Res 33(1):29–65

    Article  Google Scholar 

  • Singh P et al (2022) ‘Genomic characterization unravelling the causative role of SARS-CoV-2 Delta variant of lineage B.1.617.2 in 2nd wave of COVID-19 pandemic in Chhattisgarh, India’, Microbial Pathogenesis, 164, p. 105404. Available at: https://doi.org/10.1016/j.micpath.2022.105404

  • Sinha SK, Prasad SK et al (2020) ‘Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: a pharmacoinformatics study’, Journal of Biomolecular Structure and Dynamics, pp. 1–15. Available at: https://doi.org/10.1080/07391102.2020.1779132

  • Sinha SK, Shakya A et al (2020) ‘An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets’, Journal of biomolecular structure & dynamics, pp. 1–12. Available at: https://doi.org/10.1080/07391102.2020.1762741

  • Soleymani S et al (2022) ‘COVID-19: General Strategies for Herbal Therapies’, Journal of Evidence-Based Integrative Medicine, 27, p. 2515690X2110536. Available at: https://doi.org/10.1177/2515690X211053641

  • Tahir ul, Qamar M et al (2020) ‘Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants’, Journal of Pharmaceutical Analysis [Preprint]. Available at: https://doi.org/10.1016/j.jpha.2020.03.009

  • Tripathi MK, Singh P, Sharma S, Singh, Tej P et al (2020a) ‘Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor’, Journal of Biomolecular Structure and Dynamics, pp. 1–14. Available at: https://doi.org/10.1080/07391102.2020a.1790425

  • Tripathi MK, Singh P, Sharma S, Singh, Tej P et al (2020b) ‘Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor’, Journal of Biomolecular Structure and Dynamics, pp. 1–14. Available at: https://doi.org/10.1080/07391102.2020b.1790425

  • Tripathi MK et al (2022) ‘Identification of a promising inhibitor from Illicium verum (star anise) against the main protease of SARS-CoV-2: insights from the computational study.’, Journal of biomolecular structure & dynamics, pp. 1–17. Available at: https://doi.org/10.1080/07391102.2022.2112621

  • Umesh U et al (2020) ‘Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target’, Journal of Biomolecular Structure and Dynamics [Preprint]. Available at: https://doi.org/10.1080/07391102.2020.1763202

  • Vellingiri B et al (2020) ‘COVID-19: A promising cure for the global panic’, The Science of the total environment. 2020/04/04, 725, p. 138277. Available at: https://doi.org/10.1016/j.scitotenv.2020.138277

  • Wang Q et al (2020) ‘Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2’, Cell, 181(4), pp. 894–904. Available at: https://doi.org/10.1016/j.cell.2020.03.045

  • Wang Z et al (2022) ‘Bioactive natural products in COVID-19 therapy’, Frontiers in Pharmacology, 13. Available at: https://doi.org/10.3389/fphar.2022.926507

  • WHO (2020a) Corticosteroids for COVID-19: living guidance, 2 September 2020, https:https://apps.who.int/iris/handle/10665/334125 Available at:https://www.who.int/publications/i/item/WHO-2019-nCoV-Corticosteroids-2020.1 (Accessed: 23 September 2020)

  • WHO (2020b) Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations, https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations

  • WHO (2020c) WHO supports scientifically-proven traditional medicine, https://www.afro.who.int/news/who-supports-scientifically-proven-traditional-medicine

  • WHO (2023) COVID-19 Weekly Epidemiological Update: Edition 149 published 29 June 2023,:https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---29-june-2023

  • Wu C et al (2020) ‘Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods’, Acta Pharmaceutica Sinica. B [Preprint]. Available at: https://doi.org/10.1016/j.apsb.2020.02.008

  • Xia S, Liu M et al (2020) ‘Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion’, Cell Research, 30(4), pp. 343–355. Available at: https://doi.org/10.1038/s41422-020-0305-x

  • Xia S, Zhu Y et al (2020) ‘Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein’, Cellular & Molecular Immunology [Preprint]. Available at: https://doi.org/10.1038/s41423-020-0374-2

  • XIA L et al (2021) ‘Shufeng Jiedu, a promising herbal therapy for moderate COVID-19:Antiviral and anti-inflammatory properties, pathways of bioactive compounds, and a clinical real-world pragmatic study’, Phytomedicine, 85, p. 153390. Available at: https://doi.org/10.1016/j.phymed.2020.153390

  • Xiong W et al (2020) ‘Efficacy of herbal medicine (Xuanfei Baidu decoction) combined with conventional drug in treating COVID-19:A pilot randomized clinical trial’, Integrative Medicine Research, p. 100489. Available at: https://doi.org/10.1016/j.imr.2020.100489

  • Xu J, Zhang Y (2020) ‘Traditional Chinese Medicine treatment of COVID-19’, Complementary Therapies in Clinical Practice, 39, p. 101165. Available at: https://doi.org/10.1016/j.ctcp.2020.101165

Download references

Funding

NA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Singh Negi.

Ethics declarations

Conflicts of interest

No Conflicts of interest.

Ethics approval

NA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Tripathi, M.K., Sharma, K. et al. Medicinal plants, phytoconstituents and traditional formulation as potential therapies for SARS-CoV-2: a review update. Vegetos (2023). https://doi.org/10.1007/s42535-023-00706-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42535-023-00706-1

Keywords

Navigation