Skip to main content
Log in

In vitro growth performance of Psidium guajava and P. guineense plantlets as affected by culture medium formulations

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

The adjustment of protocols for the in vitro culture is fundamental for the conservation and application of biotechnological techniques of Psidium spp. This study has been aimed to determine the most appropriate culture medium formulation for the in vitro culture of Psidium guajava ‘Paluma’ (cv. GP) and a wild relative species, P. guineense. Seedlings of three accessions (Y93, Y95, and Y97) of P. guineense and cv. GP, previously germinated in vitro, were inoculated in the JADS, MS, and WPM culture media. After 110 days of culture, the growth morpho-physiological and nutritional parameters were assayed in the guava shoots. The use of JADS culture medium led to the highest growth in both guava species. The largest stomatal index was observed in the abaxial leaf surface of the plants grown in JADS, except for the accession Y97, which showed higher values in MS. The nutritional analysis revealed that the accumulation of nutrients in P. guineense shoots did not coincide with the composition of the culture media. Present studies conclude that the in vitro growth of the plants was influenced by the composition of the culture medium, being JADS the most indicated for the micropropagation of these guava plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguiar TV, Sant’anna-Santos BF, Azevedo AA, Ferreira RS (2007) Anati Quanti: quantitative analysis software for plant anatomy studies. Planta Daninha 25:649–659

    Google Scholar 

  • Alanagh EN, Garoosi G, Haddad R, Maleki S, Landín M, Gallego PP (2014) Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell Tissue Organ Cult 117:349–359

    CAS  Google Scholar 

  • Andrade WF, Almeida M, Gonçalves AN (2006) Multiplicação in vitro de Eucalyptus grandis sob estímulo com benzilaminopurina. Pesq Agropec Bras 41:1715–1719

    Google Scholar 

  • Balisteiro DM, Alezandro MR, Genovese MI (2013) Characterization and effect of clarified araçá (Psidium guineenses Sw.) juice on postprandial glycemia in healthy subjects. Ciênc Tecnol Aliment 33:66–74

    Google Scholar 

  • Batista DS, Dias LLC, Rêgo MM, Saldanha CW, Otoni WC (2017) Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Cienc Rural 47:1–6

    Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Plant tissue culture: an introductory text. Springer, New Delhi

    Google Scholar 

  • Borges SR, Xavier A, Oliveira LS, Melo LA, Rosado AM (2011) Enraizamento de miniestacas de clones híbridos de Eucalyptus globulus. Rev Arvore 35:425–434

    Google Scholar 

  • Bravo VCD, Gonçalves AN, Dias CTS, Vencovsky R (2008) Controle genético da regeneração in vitro em progênies de Eucalyptus grandis. Cienc Rural 38:2181–2185

    Google Scholar 

  • Brondani GE, Wit Ondas HW, Baccarin FJB, Gonçalves AN, Almeida M (2012) Micropropagation of Eucalyptus benthamii to form a clonal micro-garden.  In Vitro Cell Dev Biol Plant 48:478–487

    CAS  Google Scholar 

  • Cordeiro GM, Brondani GE, Oliveira LS, Almeida M (2014) Meio de cultura, BAP e ANA na multiplicação in vitro de clones de Eucalyptus globulus Labill. Sci Forestalis 42:337–344

    Google Scholar 

  • Correia D, Gonçalves AN, Couto HYZ, Ribeiro MC (1995) Efeito do meio de cultura líquido e sólido no crescimento e desenvolvimento de gemas de Eucalyptus grandis x Eucalyptus urophylla na multiplicação in vitro. IPEF 48(49):107–116

    Google Scholar 

  • Cruz CD (2013) GENES—a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:271–276

    Google Scholar 

  • Dibax R, Quisen RC, Bona C, Quoirin M (2010) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Dehn and histological study of organogenesis in vitro. Braz Arch Biol Technol 53:311–318

    CAS  Google Scholar 

  • EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA–EMBRAPA (2009) Manual de análises químicas de solos, plantas e fertilizantes, 2nd edn. Embrapa Informação Tecnológica, Brasília

    Google Scholar 

  • Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J 69:978–995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faria DV, Correia LNF, Matos EM, Souza MVC, Batista DS et al (2019) Wounding and medium formulation affect de novo shoot organogenic responses in hypocotyl-derived explants of annatto (Bixa orellana L.). In Vitro Cell Dev Biol Plant 55:277–289

    CAS  Google Scholar 

  • Fernandes TG, Mesquita ARC, Randau KP, Franchitti AA, Ximenes EA (2012) In vitro synergistic effect of Psidium guineense (Swartz) in combination with antimicrobial agents against Methicillin-resistant Staphylococcus aureus strains. Sci World J 2012:1–7

    Google Scholar 

  • Franzon RC, Campos LZO, Proença CEB, Sousa-Silva JC (2009) Araçás do gênero Psidium: Principais espécies, ocorrência, descrição e usos. Embrapa Cerrados, Planaltina

    Google Scholar 

  • George EF, De Klerk GJ (2008) The components of plant tissue culture media. I: Macro and micro-nutrients. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 65–114

    Google Scholar 

  • Glocke P, Delaporte K, Collins G, Sedgley M (2006) Micropropagation of juvenile tissue of Eucalyptus erythronema x Eucalyptus stricklandii cv. ‘urrbrae gem’. In Vitro Cell Dev Biol Plant 42:139–143

    CAS  Google Scholar 

  • Gomes VM, Souza RM, Silveira SF, Almeida AM (2013) Guava decline: effect of root exudates from Meloidogyne enterolobii-parasitized plants on Fusarium solani in vitro and on growth and development of guava seedlings under controlled conditions. Eur J Plant Pathol 137:393–401

    Google Scholar 

  • González AMN, González MBR, Pinto NLS (2005) Estudio fitoquímico e actividad antibacterial de Psidium guineense Sw (choba) frente a Streptococcus mutans, agente causal de caries dentales. Rev Cubana Plantas Medic 1:3–4

    Google Scholar 

  • Haminiuk CWI, Plata-Oviedo MSV, Guedes AR, Stafussa AP, Bona E et al (2011) Chemical, antioxidant and antibacterial study of Brazilian fruits. Int J Food Sci Tech 46:1529–1537

    CAS  Google Scholar 

  • Hartmann HT, Kester DE, Davies Junior FT, Geneve RL (2011) Plant propagation: principles and practices, 8th edn. Prentice-Hall, New Jersey

    Google Scholar 

  • Husman M, Butt M, Fatima B (2012) Enhanced in vitro multiple shoot induction in elite Pakistani guava cultivars for efficient clonal plant multiplication. Afr J Biotechnol 11:10182–10187

    Google Scholar 

  • Jaiswal VS, Amin MN (1992) Guava and jack fruit. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB International, Wallingford, pp 421–432

    Google Scholar 

  • Landrum LR, Kawasaki ML (1997) The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. Brittonia 49:508–536

    Google Scholar 

  • Liu X, Yang G (2011) Clonal propagation of guava (Psidium guajava L.) on nodal explants of mature elite cultivar. Int J Plant Biol 2:7–10

    CAS  Google Scholar 

  • Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of Mountain Laurel, Kalmia latifolia, by shoot tip culture. Comb Proc Intl Plant Prop Soc 30:421–427

    Google Scholar 

  • Maghrebi M, Nocito FF, Sacchi GA (2014) Monitoring plant nutritional status. In: Hawkesford MM, Kopriva S, de Kok L (eds) Nutrient use efficiency in plants. Plant Ecophysiology, vol. 10, pp 253–272

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nachtigal JC, Hoffmann A, Kluge RA, Fachinello JC, Mazzini ARA (1994) Enraizamento de estacas semilenhosas de araçazeiro (P. cattleyanum Sabine) com o uso do ácido indolbutírico. Rev Bras Frutic 16:229–235

    Google Scholar 

  • Nascimento KF, Moreira FMF, Santos JA, Kassuya CAL, Croda JHR et al (2018) Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J Ethnopharmacol 210:351–358

    PubMed  Google Scholar 

  • Oberschelp GPJ, Gonçalves AN (2016) Assessing the effects of basal media on the in vitro propagation and nutritional status of Eucalyptus dunnii Maiden.  In Vitro Cell Dev Biol Plant 52:28–37

    CAS  Google Scholar 

  • Oliveira-Cauduro Y, Adamuchio LG, Degenhardt-Goldbach J, Bespalhok Filho JC, Dibax R et al (2014) Organogênese indireta a partir de explantes foliares e multiplicação in vitro de brotações de Eucalyptus benthamii x Eucalyptus dunnii. Cienc Florestal 24:347–355

    Google Scholar 

  • Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biol Plant 55:242–257

    Google Scholar 

  • Pinto G, Silva S, Park YS, Neves L, Araújo C et al (2008) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tissue Organ Cult 95:79–88

    CAS  Google Scholar 

  • Poothong S, Reed BM (2014) Modeling the effects of mineral nutrition for improving growth and development of micropropagated red raspberries. Sci Hortic 165:132–141

    CAS  Google Scholar 

  • Poothong S, Reed BM (2015) Increased CaCl2, MgSO4, and KH2PO4 improve the growth of micropropagated red raspberries.  In Vitro Cell Dev Biol Plant 51:648–658

    CAS  Google Scholar 

  • Poothong S, Reed BM (2016) Optimizing shoot culture media for Rubus germplasm: the effects of NH4+, NO3, and total nitrogen.  In Vitro Cell Dev Biol Plant 52:265–275

    CAS  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswa U (2009) Shoot multiplication and plant regeneration of guava (Psidium guajava L.) from nodal explants of in vitro raised plantlets. J Fruit Ornam Plant Res 17:29–38

    CAS  Google Scholar 

  • Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In Vitro Cell Dev Biol Plant 38:116–124

    CAS  Google Scholar 

  • Reed BM, Wada S, Denoma J, Niedz RP (2013a) Mineral nutrition influences physiological responses of pear in vitro. In Vitro Cell Dev Biol Plant 49:699–709

    CAS  Google Scholar 

  • Reed BM, Wada S, Denoma J, Niedz RP (2013b) Improving in vitro mineral nutrition for diverse pear germplasm. In Vitro Cell Dev Biol Plant 49:343–355

    CAS  Google Scholar 

  • Rodrigues CG, Ferreira PRB, Mendes CSO, Reis Junior R, Valerio HM et al (2014) Antibacterial activity of tannins from Psidium guineense Sw. (Myrtaceae). J Med Plant Res 8:1095–1100

    Google Scholar 

  • Santos RP, Cruz ACF, Iarema L, Kuki KN, Otoni WC (2008) Protocolo para extração de pigmentos foliares em porta-enxertos de videira micropropagados. Rev Ceres 55:356–364

    CAS  Google Scholar 

  • Santos MAC, Queiroz MA, Santos AS, Santos LC, Carneiro PCS (2014) Diversidade genética entre acessos de araçá de diferentes municípios do semiárido baiano. Rev Caatinga 27:48–57

    Google Scholar 

  • Santos MAC, Queiroz MA, Bispo JDS, Dantas BF (2015) Seed germination of Brazilian guava (Psidium guineense Swartz.). J Seed Sci 37:214–221

    Google Scholar 

  • Santos MAC, Rego MM, Queiroz MA, Dantas BF, Otoni WC (2016) Synchronizing the in vitro germination of Psidium guineense Sw. seeds by means of osmotic priming. Rev Árvore 40:649–660

    Google Scholar 

  • Segatto FB, Bisognin DA, Benedetti M, Costa LC, Rampelotto MV et al (2004) Técnica para o estudo da anatomia da epiderme foliar de batata. Ciênc Rural 34:1597–1601

    Google Scholar 

  • Shah ST, Zamir R, Ahmad J, Ali H, Lutfullah G (2008) In vitro regeneration of plantlets from seedling explants of Guava (Psidium guajava L.) cv. Safeda. Pakistan J Bot 40:1195–1200

    CAS  Google Scholar 

  • Shahzad A, Sharma S, Parveen S, Saeed T, Shaheen A et al (2017) Historical perspective and basic principles of plant tissue culture. In: Abdin M, Kiran U, Ali AK (eds) Plant biotechnology: principles and applications. Springer, Singapore, pp 1–36

    Google Scholar 

  • Silva JD, Luz AIR, Silva MHL, Andrade EHA, Zoghbi MGB et al (2003) Essential oils of the leaves and stems of four Psidium spp. Flavour Fragr J 18:240–243

    Google Scholar 

  • Singh SK, Meghwal PR, Sharma HC, Singh SP (2002) Direct shoot organogenesis on hypocotyl explants from in vitro germinated seedlings of Psidium guajava L. cv. Allahabad Safeda.  Sci Hortic 95:213–221

    CAS  Google Scholar 

  • Sotiropoulos TE, Mouhtaridou GN, Thomidis T, Tsirakoglou V, Dimassi KN et al (2005) Effects of different N-sources on growth, nutritional status, chlorophyll content, and photosynthetic parameters of shoots of the apple rootstock MM 106 cultured in vitro. Biol Plant 49:297–299

    Google Scholar 

  • Tripathi DK, Singh S, Singh S, Mishra S (2015) Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol Plant 37:139

    Google Scholar 

  • Wada S, Niedz RP, Denoma J, Reed BM (2013) Mesos components (CaCl2, MgSO4, KH2PO4) are critical for improving pear micropropagation. In Vitro Cell Dev Biol Plant 49:356–365

    CAS  Google Scholar 

  • Wada S, Niedz RP, Reed BM (2015) Determining nitrate and ammonium requirements for optimal in vitro response of diverse pear species. In Vitro Cell Dev Biol Plant 51:19–27

    CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Williams RR (1993) Mineral nutrition in vitro—a mechanistic approach. Aust J Bot 41:237–251

    CAS  Google Scholar 

  • Yu C, Lv DG, Qin SJ, Yang L, Ma HY et al (2010) Changes in photosynthesis, fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida) in response to exogenous glutamic acid. Photosynthetica 48:339–347

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development (CNPq) (Brazil), Coordination for Improvement of Higher Education Personnel (CAPES, Brazil, Financial Code 01), Research Support Foundation of the State of Minas Gerais (FAPEMIG) (Belo Horizonte, MG, Brazil), and the State University of Bahia (UNEB) (Juazeiro, BA, Brazil) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Campos Otoni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, M.A.C., do Rêgo, M.M., de Queiróz, M.A. et al. In vitro growth performance of Psidium guajava and P. guineense plantlets as affected by culture medium formulations. Vegetos 33, 435–445 (2020). https://doi.org/10.1007/s42535-020-00125-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-020-00125-6

Keywords

Navigation