Skip to main content
Log in

Mediation Analysis in Categorical Variables under Non-Ignorable Missing Data Mechanisms

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

A mediating variable is a variable that is intermediate in the causal path relating an independent variable to a dependent variable in statistical analysis. The mediation analysis of using a categorical predictor, mediator, and outcome variables has been investigated in the literature. It is extremely common to have missing data even after having a well-controlled study. It is also well known that missingness, especially the non-ignorable missing, in a dataset has often been proven to produce biased results. This paper uses the extended Baker, Rosenberger, and Dersimonian (BRD) model to estimate the mediation effect under non-ignorable missing mechanisms. This paper also proposes four identifiable models to estimate the mediation effect for missingness in one categorical variable with two fully observed categorical variables. We reported the relative bias and Mean Square Error to compare the performance of the proposed BRD models against the Complete Case and Multiple Imputation methods in estimating the mediated effect (\(\widehat{a}\widehat{b}\)) under the non-ignorable missing mechanism. The application of these models in estimating the mediated effect was demonstrated using the Multiple Risk Factor Intervention Trial datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wright S (1920) The relative importance of heredity and environment in determining the piebald pattern of Guinea pigs. Proc Natl Acad Sci 6:320–332

    Article  Google Scholar 

  2. Wright S (1923) The theory of path coefficients: a reply to Niles’s criticism. Genetics 8:239–255

    Article  Google Scholar 

  3. MacKinnon DP (2013) Introduction to statistical mediation analysis. Routledge, New York

    Google Scholar 

  4. Woodworth RS (1928) Dynamic psychology. In: C. Murchison (Ed.). Psychologies of 1925 (pp 111–126). Worcester, MA; Clark University Press

  5. Judd CM, Kenny DA (1981) Process analysis: estimating mediation in treatment evaluations. Eval Rev 5:602–619

    Article  Google Scholar 

  6. Fisher RA (1934) Statistical methods for research workers, 5th edn. Oliver and Boyd Lt, Edinburgh, Scotland

    MATH  Google Scholar 

  7. Kendall PL, Lazarsfeld PF (1950) Problems of survey analysis. In: Merton RK, Lazarsfeld PF (eds) Continuities is social research: studies in the scope and method of The American soldier. Free Press, Glencoe, IL, pp 133–196

    Google Scholar 

  8. Jöreskog KG (1970) A general method for analysis of covariance structures. Biometrika 57:239–251

    Article  MathSciNet  MATH  Google Scholar 

  9. Jöreskog KG (1973) A general method for estimating a linear structural equation system. In: Goldberger AS, Duncan OD (eds) Structural equation models in the social sciences. Seminar Press, New York, pp 85–112

    Google Scholar 

  10. Keesling JW (1972) Maximum likelihood approaches to causal analysis [Unpublished doctoral dissertation]. University of Chicago

  11. Wiley DE (1973) The identification problem for structural equation models with unmeasured variables. In: Goldberger AS, Duncan OD (eds) Structural equation models in the social sciences. Seminar Press, New York, pp 69–83

    Google Scholar 

  12. Sobel ME (1982) Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol 13:290–312. https://doi.org/10.2307/270723

    Article  Google Scholar 

  13. Frangakis CE, Rubin DB (2002) Principal stratification in causal inference. Biometrics 58:21–29

    Article  MathSciNet  MATH  Google Scholar 

  14. Little R, Rubin D (2002) Statistical analysis with missing data (2nd ed.). In: Models for partially classified contingency tables, ignoring the missing-data mechanism. Wiley-Interscience

  15. Rubin DB (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 66:688–701

    Article  Google Scholar 

  16. Baker SG, Rosenberger WF, DerSimonian R (1992) Closed-form estimates for missing counts in two-way contingency tables. Stat Med 11:643–657

    Article  Google Scholar 

  17. Hocking RR, Oxspring HH (1974) The analysis of partially categorized contingency data. Biometrics 30(3):469–483

    Article  MATH  Google Scholar 

  18. Bishop YMM, Fienberg SE, Holland PW (2007) Discrete multivariate analysis. Springer, New York

    MATH  Google Scholar 

  19. Rochani HD, Vogel RL, Samawi HM, Linder DF (2017) Estimates for cell counts and common odds ratio in three-way contingency tables by homogeneous log-linear models with missing data. Adv Stat Anal AStA 101:51–65

    Article  MathSciNet  MATH  Google Scholar 

  20. Samawi H, Cai J, Linder DF, Rochani H, Yin J (2018) A simpler approach for mediation analysis for dichotomous mediators in logistic regression. J Stat Comput Simul 88(6):1211–1227. https://doi.org/10.1080/00949655.2018.1426762

    Article  MathSciNet  MATH  Google Scholar 

  21. MacKinnon DP, Dwyer JH (1993) Estimating mediated effects in prevention studies. Eval Rev 17:144–158

    Article  Google Scholar 

  22. Winship C, Mare RD (1983) Structural equations and path analysis for discrete data. Am J Sociol 89:54–110

    Article  Google Scholar 

  23. Jansen I (2005) Flexible model strategies and sensitivity analysis tools for non-monotone incomplete categorical data. LUC

  24. Iacobucci D (2012) Mediation analysis with categorical variables: the final frontier. J Consum Psychol 22(4):582–594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haresh Rochani.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Model (\({\boldsymbol{\alpha }}_{\dots }\))

\(\begin{gathered} L = \left\{ {\prod\limits_{i,j,k} {\frac{{e^{{ - \mu_{{_{ijk111} }} }} (\mu_{{_{ijk111} }} )^{{n_{{_{ijk111} }} }} }}{{^{{n_{{_{ijk111} }} }} }}} \times \prod\limits_{j,k} {\frac{{e^{{ - \mu_{{_{ + jk211} }} }} (\mu_{{_{ + jk211} }} )^{{n_{ + jk211} }} }}{{n_{ + jk211} }}} } \right\} - \mu_{ + + + 111} , \hfill \\ \hfill \\ \end{gathered}\)

given \({\mu }_{ijk111}= \widehat{{m}_{ijk}}\) and \({\mu }_{+jk211}= \widehat{{m}_{+jk}}\widehat{{\alpha }_{\dots }}\), the above equation can be written as

$$L = \left\{ {\prod\limits_{i,j,k} {\frac{{e^{{ - m_{{_{ijk} }} }} (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} )^{{n_{{_{ijk111} }} }} }}{{^{{n_{{_{ijk111} }} }} }}} \times \prod\limits_{j,k} {\frac{{e^{{ - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \alpha_{{_{...} }} }} (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{...} }} )^{{n_{ + jk211} }} }}{{n_{ + jk211} }}} } \right\} - \mu_{ + + + 111}$$

The log-likelihood function can be derived as

$$L = \sum\limits_{i} {\sum\limits_{j} {\sum\limits_{k} {n_{{_{ijk111} }} \log (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} )} } } + \sum\limits_{j} {\sum\limits_{k} {n_{ + jk211} \log (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{...} }} )} } - \sum\limits_{i} {\sum\limits_{j} {\sum\limits_{k} {\left\{ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{...} }} )} \right\}} } } + \Delta$$

By differentiating with respect to \(\widehat{{\alpha_{ \ldots } }},\) we have:

$$\therefore \frac{dL}{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{...} }} }} = \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{...} }} }} \bullet \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + + + } }}$$
$$\therefore 0 = \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{...} }} }} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + + + }$$
$$\therefore \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{...} }} = \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + + + } }}.$$

Given each cell count denoted by {nijkabc}, where i, j, and k represent the categories for variables I, J, and K, respectively. Hence, we have

$$\begin{gathered} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + + + } = n_{ + + + 111} \hfill \\ n_{ + jk211} = n_{ + + + 211} \hfill \\ \end{gathered}$$
$$\therefore \boxed{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{...} }} = \frac{{n_{ + + + 211} }}{{n_{ + + + 111} }}}$$

By differentiating with respect to \(\widehat{{m_{ + jk} }},\) we have:

$$\frac{dL}{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk} }} = \frac{{n_{ijk111} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} }} + \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + jk} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{...} }} \bullet \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{...} - (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{...} )$$
$$0 = \frac{{n_{ijk111} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} }} + \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + jk} }} - (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{...} )$$
$$\therefore (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{...} ) = \frac{{n_{ijk111} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} }} + \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + jk} }}$$
$$\therefore \left( {1 + \frac{{n_{ + + + 211} }}{{n_{ + + + 111} }}} \right) = \frac{{n_{ijk111} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} }} + \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + jk} }}$$
$$\left( {\frac{{n_{ + + + 111} + n_{ + + + 211} }}{{n_{ + + + 111} }}} \right) = \frac{{n_{ijk111} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} }} + \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + jk} }}$$
$$(\frac{{n_{ + + + + 11} }}{{n_{ + + + 111} }})\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} = n_{ijk111} + \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + jk} }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk}$$
$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} = \left( {n_{ijk111} + \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + jk} }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk} } \right)\left( {\frac{{n_{ + + + 111} }}{{n_{ + + + + 11} }}} \right)$$
$$\hat{{m}_{+jk}}=\left({n}_{+jk111} + \frac{{n}_{+jk211}}{\hat{{m}_{+jk}}}\hat{{m}_{+jk}}\right)\left(\frac{{n}_{+++111}}{{n}_{++++11}}\right)$$
$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ + jk} = \left( {n_{ + jk111} + n_{ + jk211} } \right)\left( {\frac{{n_{ + + + 111} }}{{n_{ + + + + 11} }}} \right)$$
$$\boxed{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} = \frac{{n_{{_{ + jk + 11} }} n_{ + + + 111} }}{{n_{ + + + + 11} }}}$$

This can be simplified further as

$$\frac{{n_{{_{ + jk + 11} }} n_{ + + + 111} }}{{n_{ + + + + 11} }} = \left( {n_{{_{ + jk111} }} + \frac{{n_{{_{ + + + + 11} }} n_{{_{ + jk211} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} }}{{n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} }}} \right)\left( {\frac{{n_{ + + + 111} }}{{n_{ + + + + 11} }}} \right)$$
$$\frac{{n_{{_{ + jk + 11} }} n_{ + + + 111} }}{{n_{ + + + + 11} }} = \left( {\frac{{n_{{_{ + jk111} }} n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} + n_{{_{ + + + + 11} }} n_{{_{ + jk211} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} }}{{n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} }}} \right)\left( {\frac{{n_{ + + + 111} }}{{n_{ + + + + 11} }}} \right)$$
$$\frac{{n_{{_{ + jk + 11} }} n_{ + + + 111} }}{{n_{ + + + + 11} }} = \left( {\frac{{n_{{_{ + + + 111} }} n_{{_{ + jk111} }} n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} + n_{{_{ + + + 111} }} n_{{_{ + + + + 11} }} n_{{_{ + jk211} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} }}{{n_{{_{ + + + + 11} }} n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} }}} \right)$$

\(n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} n_{{_{ + + + + 11} }} n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} = n_{{_{ + + + + 11} }} n_{{_{ + + + 111} }} n_{{_{ + jk111} }} n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} + n_{{_{ + + + + 11} }} n_{{_{ + + + 111} }} n_{{_{ + + + + 11} }} n_{{_{ + jk211} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }}\)

$$\frac{{n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} n_{{_{ + + + + 11} }} n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} - n_{{_{ + + + + 11} }} n_{{_{ + + + 111} }} n_{{_{ + jk111} }} n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} }}{{n_{{_{ + + + + 11} }} n_{{_{ + + + 111} }} n_{{_{ + + + + 11} }} n_{{_{ + jk211} }} }} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }}$$
$$\begin{gathered} \frac{{n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} n_{{_{ + + + + 11} }} n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} - n_{{_{ + + + + 11} }} n_{{_{ + + + 111} }} n_{{_{ + jk111} }} n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} }}{{n_{{_{ + + + + 11} }} n_{{_{ + + + 111} }} n_{{_{ + + + + 11} }} n_{{_{ + jk211} }} }} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} \hfill \\ \hfill \\ \end{gathered}$$

Therefore, we have

$$\boxed{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} = \frac{{n_{{_{ + jk + 11} }} n_{{_{ + + + 111} }} (n_{{_{ + jk + 11} }} - n_{{_{ + jk111} }} )}}{{n_{{_{ + + + + 11} }} n_{{_{ + jk211} }} }}}$$

Model (\({\boldsymbol{\alpha }}_{{\varvec{i}}..}\))

$$\begin{gathered} L = \left\{ {\prod\limits_{i,j,k} {\frac{{e^{{ - \mu_{{_{ijk111} }} }} (\mu_{{_{ijk111} }} )^{{n_{{_{ijk111} }} }} }}{{^{{n_{{_{ijk111} }} }} }}} \times \prod\limits_{j,k} {\frac{{e^{{ - \mu_{{_{ + jk211} }} }} (\mu_{{_{ + jk211} }} )^{{n_{ + jk211} }} }}{{n_{ + jk211} }}} } \right\} - \mu_{ + + + 111} \hfill \\ \hfill \\ \end{gathered}$$
$$L = \left\{ {\prod\limits_{i,j,k} {\frac{{e^{{ - m_{{_{ijk} }} }} (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} )^{{n_{{_{ijk111} }} }} }}{{^{{n_{{_{ijk111} }} }} }}} \times \prod\limits_{j,k} {\frac{{e^{{ - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \alpha_{{_{...} }} }} (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{i..} }} )^{{n_{ + jk211} }} }}{{n_{ + jk211} }}} } \right\} - \mu_{ + + + 111}$$
$$L = \sum\limits_{i} {\sum\limits_{j} {\sum\limits_{k} {n_{{_{ijk111} }} \log (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} )} } } + \sum\limits_{j} {\sum\limits_{k} {n_{ + jk211} \log \left( {\sum\limits_{i} {(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{i..} }} )} } \right)} } - \sum\limits_{i} {\sum\limits_{j} {\sum\limits_{k} {\left\{ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{i..} }} )} \right\}} } } + \Delta$$
$$\therefore \frac{dL}{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{i..} }} }} = \sum\limits_{j} {\sum\limits_{k} {\left( {\frac{{n_{ + jk211} }}{{\sum\limits_{i} {(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{i..} }} )} }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} } \right)} } - \sum\limits_{j} {\sum\limits_{k} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} } }$$

\(\sum\limits_{j} {\sum\limits_{k} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} } } = \sum\limits_{j} {\sum\limits_{k} {\left( {\frac{{n_{ + jk211} }}{{\sum\limits_{i} {(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{i..} }} )} }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} } \right)} }\),

therefore, we can deduce that given \(\boxed{\sum\limits_{i} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} } = n_{ + jk211} }\) \(\forall \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{i..} }}\), then

\(\frac{dL}{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk} }} = \frac{{n_{ijk111} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} }} + \frac{{n_{ + jk211} }}{{\sum\limits_{i} {(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} )} }} \bullet \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} - (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} )\)

$$(1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} ) = \frac{{n_{ijk111} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} }} + \frac{{n_{ + jk211} }}{{\sum\limits_{i} {(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} )} }} \bullet \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..}$$
$$(1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} )\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} = n_{ijk111} + \frac{{n_{ + jk211} }}{{\sum\limits_{i} {(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} )} }}(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} ).$$

By assuming \(\sum\limits_{i} {(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} )} = n_{ + jk211}\), we have:

$$(1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} )\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} = n_{ijk111} + \frac{{n_{ + jk211} }}{{n_{ + jk211} }}(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} )$$
$$(1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} )\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...} = n_{{_{ijk111} }} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{i..} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{ijk...}$$
$$\boxed{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m} ijk_{ijk...} = n_{ijk111} }$$

Model (\({\boldsymbol{\alpha }}_{.{\varvec{j}}.}\))

$$L = \sum\limits_{i} {\sum\limits_{j} {\sum\limits_{k} {n_{{_{ijk111} }} \log (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} )} } } + \sum\limits_{j} {\sum\limits_{k} {n_{ + jk211} \log (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} )} } - \sum\limits_{j} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + j + } }} (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} )} + \Delta$$
$$\therefore \frac{dL}{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} }} = \sum\limits_{k} {\left( {\frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} } \right)} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + j + } }}$$
$$\therefore 0 = \frac{{n_{ + j + 211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} }} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + j + } }}$$
$$\therefore \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + j + } }} = \frac{{n_{ + j + 211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} }}$$
$$\boxed{\therefore \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} = \frac{{n_{ + j + 211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + j + } }} }}}$$

\(\therefore \frac{dL}{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} }} = \frac{{n_{{_{ijk111} }} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} }} + \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} - (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} )\), since \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} = n_{ + jk211}\), then:

$$\therefore (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} ) = \frac{{n_{{_{ijk111} }} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} }} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }}$$
$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} ) = n_{{_{ijk111} }} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{.j.} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }}$$
$$\boxed{\therefore \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} = n_{{_{ijk111} }} }$$

Model (\({\boldsymbol{\alpha }}_{..{\varvec{k}}}\))

$$L = \sum\limits_{i} {\sum\limits_{j} {\sum\limits_{k} {n_{{_{ijk111} }} \log (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} )} } } + \sum\limits_{j} {\sum\limits_{k} {n_{ + jk211} \log (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} )} } - \sum\limits_{k} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + + k} }} (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} )} + \Delta$$
$$\therefore \frac{dL}{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} }} = \sum\limits_{j} {\left( {\frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} } \right)} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + + k} }}$$
$$\therefore 0 = \frac{{n_{ + + k211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} }} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + + k} }}$$
$$\therefore \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + + k} }} = \frac{{n_{ + + k211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} }}$$
$$\boxed{\therefore \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} = \frac{{n_{ + + k211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + + k} }} }}}$$

\(\therefore \frac{dL}{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} }} = \frac{{n_{{_{ijk111} }} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} }} + \frac{{n_{ + jk211} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} - (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} )\), since \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ + jk} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} = n_{ + jk211}\), then:

$$\therefore (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} ) = \frac{{n_{{_{ijk111} }} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} }} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }}$$
$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} (1 + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} ) = n_{{_{ijk111} }} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{_{..k} }} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }}$$
$$\boxed{\therefore \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{m}_{{_{ijk} }} = n_{{_{ijk111} }} }$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoku, S., Rochani, H., Samawi, H. et al. Mediation Analysis in Categorical Variables under Non-Ignorable Missing Data Mechanisms. J Stat Theory Pract 17, 51 (2023). https://doi.org/10.1007/s42519-023-00346-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-023-00346-3

Keywords

Navigation