Skip to main content
Log in

Minimum Hellinger Distance Estimation for Discretely Observed Stochastic Processes Using Recursive Kernel Density Estimator

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

The paper deals with the estimation of the parameters of stochastic processes that are discretely observed. We construct estimator of the parameters based on the minimum Hellinger distance method. This method is based on the minimization of the Hellinger distance between the density of the invariant distribution of the stochastic process and a nonparametric estimator of this density. We give conditions which ensure the existence of an invariant measure that admits density with respect to the Lebesgue measure and the strong mixing property with geometric rate for the stochastic process. Under these conditions, using the recursive kernel density estimator of the invariant density of the stochastic process, we construct the minimum Hellinger distance estimator of the parameters. As in the nonrecursive kernel density case, the minimum Hellinger distance estimator obtained using the recursive kernel density estimator is consistent and asymptotically normal. Simulation results show that the minimum Hellinger distance estimator obtained with recursive kernel density estimator is slightly better than that obtained with a nonrecursive kernel density estimator in terms of standard deviation or standard error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beran R (1977) Minimum Hellinger distance estimates for parametric models. Ann Stat 5:445–463

    MathSciNet  MATH  Google Scholar 

  2. Bianchi A (2007) Nonparametric trend coefficient estimation for multidimensional diffusions. C R Acad Sci Paris Ser I 345:101–105

    MathSciNet  MATH  Google Scholar 

  3. Bosq D (1998) Nonparametric statistics for stochastic processes: estimation and prediction, 2nd edn. Springer, New York, p 218

    MATH  Google Scholar 

  4. Castellana JV, Leadbetter MR (1986) On smoothed probability density estimation for stationary processes. Stoch Process Appl 21:179–193

    MathSciNet  MATH  Google Scholar 

  5. Caumel Y (2011) Probabilités et processus stochastiques. Springer, Paris, p 308

    MATH  Google Scholar 

  6. Chatfield C, Xing H (2019) The analysis of time series. An introduction with R, 7th edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  7. Deheuvels P (1973) Sur l’estimation séquentielle de la densité. Comptes Rendus de l’Academie des Sciences, Series A 276:1119–1121

    MathSciNet  MATH  Google Scholar 

  8. Delaigle A, Gijbels I (2004) Practical bandwidth selection in deconvolution kernel density estimation. Comput Stat Data Anal 45:249–267

    MathSciNet  MATH  Google Scholar 

  9. Devroye L, Györfi L (1985) Nonparametric density estimation: the \(L_{1}\) view. Wiley, New York

    MATH  Google Scholar 

  10. Dharmenda S, Masry E (1996) Minimum complexity regression estimation with weakly dependent observations. IEEE Trans Inf Theory 42(6):2133–2145

    MathSciNet  MATH  Google Scholar 

  11. Doukhan P (1994) Mixing: Properties and Examples, Lecture Notes in Statist, 85. Springer, Berlin

  12. Doukhan P, Leon JR (1990) Deviation quadratique d’estimateurs de densite par projections orthogonales. CR Acad Sci Paris 310, Ser 1 425–430

  13. Duflo M (1997) Random iterative models. Collection applications of mathematics. Springer, Berlin

    Google Scholar 

  14. Duin RPW (1976) On the choice of smoothing parameters of Parzen estimators of probability density functions. IEEE Trans Comput C–25:1175–1179

    MATH  Google Scholar 

  15. Genon-Catalot V, Jeantheau T, Laredo C (1999) Parameter estimation for discretely observed stochastic volatility models. Bernoulli 5:855–872

    MathSciNet  MATH  Google Scholar 

  16. Genon-Catalot V, Jeantheau T, Laredo C (2000) Stochastic volatility models as Hidden Markov models and statistical applications. Bernouilli 6:1051–1079

    MathSciNet  MATH  Google Scholar 

  17. Glick N (1974) Consistency conditions for probability estimators and integrals of density estimators. Utilitas Mathematica 6:61–74

    MathSciNet  MATH  Google Scholar 

  18. Gyorfi L, Masry E (1990) The \(L_{1}\) and \(L_{2}\) Strong consistency of recursive kernel density estimation from dependent samples. IEEE Trans Inf Theory 36(3):531–539

    MATH  Google Scholar 

  19. Hall P, Patil P (1994) On the efficiency of on-line density estimators. IEEE Trans Inf Theory 40:1504–1512

    MATH  Google Scholar 

  20. Helali S, Slaoui Y (2020) Estimation of a distribution function using Lagrange polynomials with Tchebychev–Gauss points. Stat Its Interface 13:399–410

    MathSciNet  MATH  Google Scholar 

  21. Hili O (1995) On the estimation of nonlinear time series models. Stoch Rep 52:207–226

    MathSciNet  MATH  Google Scholar 

  22. Iacus SM (2008) Simulation and Inference for Stochastic Differential Equations, 300 pages. Springer series in statistics. Springer, New York

  23. Jacobsen M. Examples of multivariate diffusions: the time-reversibility, a Cox–Ingersoll–Ross type process. Preprint \(2001-6\), Departement of Statistics and Operations Research, University of Copenhagen

  24. Cox John C, Ingersoll Jonathan E Jr, Ross Stephen A (1985) A theory of the term structure of interest rates. Econometrica 53(2):385–407

    MathSciNet  MATH  Google Scholar 

  25. Khardani S, Slaoui Y (2019) Recursive kernel density estimation and optimal bandwidth selection under \(\alpha \) mixing data. J Stat Theory Pract 13(36):1–21

    MathSciNet  MATH  Google Scholar 

  26. Leblanc A (2009) Chung–Smirnov property for Bernstein estimators of distribution functions. J Nonparametr Stat 21:133–142

    MathSciNet  MATH  Google Scholar 

  27. Leblanc F (1996) Wavelet linear density estimator for a discrete-time stochastic processes: \(L_{p}\) loss. Stat Probab Lett 27:71–84

    MATH  Google Scholar 

  28. Marron JS (1988) Automatic smoothing parameter selection: a survey. Empec 13:187–208

    Google Scholar 

  29. Masry E (1986) Recursive probability density estimation for weakly dependent stationary processes. IEEE Trans Inf Theory 32(2):254–267

    MathSciNet  MATH  Google Scholar 

  30. Masry E (1987) Almost sure convergence of recursive density estimators for stationary mixing processes. Statist Probab Lett 5:249–254

    MathSciNet  MATH  Google Scholar 

  31. Masry E (1997) Multivariate probability density estimation by wavelet methods: strong consistency and rates for stationary time series. Stoch Process Appl 67:177–193

    MathSciNet  MATH  Google Scholar 

  32. Masry E, Gyorfi L (1987) Strong consistency and rates for recursive probability density estimators of stationary processes. J Multivar Anal 22:79–93

    MathSciNet  MATH  Google Scholar 

  33. Mezhoud KA, Mohdeb Z, Louhichi S (2014) Recursive kernel estimation of the density under \(\eta \)-weak dependence. J Korean Stat Soc 43(3):403–414

    MathSciNet  MATH  Google Scholar 

  34. Mokkadem A, Pelletier M, Slaoui Y (2009) The stochastic approximation method for the estimation of a multivariate probability density. J Stat Plan Inference 139(7):2459–2478

    MathSciNet  MATH  Google Scholar 

  35. N’drin JA, Hili O (2013) Parameter estimation of one-dimensional diffusion process by minimum Hellinger distance method. Random Oper Stoch Equ 21(4):403–424

    MathSciNet  MATH  Google Scholar 

  36. N’drin JA, Hili O (2015) From nonparametric density estimation to parametric estimation of multidimensional diffusion processes. Appl Math 6:1592–1610

    Google Scholar 

  37. Pardoux E, Veretennikov YuA (2001) On the Poisson equation and diffusion approximation. I. Ann Probab 29:1061–1085

    MathSciNet  MATH  Google Scholar 

  38. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    MathSciNet  MATH  Google Scholar 

  39. Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837

    MathSciNet  MATH  Google Scholar 

  40. Rosenblatt M (1970) Density estimates and Markov sequences. In: Puri ML (ed) Nonparametric techniques in statistical inference. Cambridge University Press, Cambridge, pp 199–210

    Google Scholar 

  41. Roussas GG (1969) Nonparametric estimation in Markov Processes. Ann Inst Stat Math 21:73–87

    MathSciNet  MATH  Google Scholar 

  42. Roussas GG (1988) Nonparametric estimation in mixing sequences of random variables. J Stat Plan Inference 18:135–139

    MathSciNet  MATH  Google Scholar 

  43. Roussas GG (1990) Asymptotic normality of the kernel estimate under dependence conditions: application to hazard rate. J Stat Plann Inference 25:81–104

    MathSciNet  MATH  Google Scholar 

  44. Roussas GG (1991) Kernel estimates under association: strong uniform consistency. Stat Probab Lett 12:393–403

    MathSciNet  MATH  Google Scholar 

  45. Rudemo M (1982) Empirical choice of histograms and kernel density estimators. Scand J Stat 9:65–78

    MathSciNet  MATH  Google Scholar 

  46. Scott DW (1992) Multivariate density estimation: theory, practice, and visualization. Wiley, New York

    MATH  Google Scholar 

  47. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  48. Simpson DG (1987) Minimum Hellinger distance estimation for the analysis of count data. J Am Stat Assoc 82:802–807

    MathSciNet  MATH  Google Scholar 

  49. Slaoui Y (2014) Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method. J Probab Stat. https://doi.org/10.1155/2014/739640

    Article  MathSciNet  MATH  Google Scholar 

  50. Slaoui Y (2019) Automatic bandwidth selection for recursive kernel density estimators with length-biased data. Jpn J Stat Data Sci. https://doi.org/10.1007/s42081-019-00053-z

    Article  MATH  Google Scholar 

  51. Slaoui Y, Jmaei A (2019) Recursive density estimators based on Robbins–Monro’s scheme and using Bernstein polynomials. Stat Its Interface 12:439–455

    MathSciNet  MATH  Google Scholar 

  52. Sørensen H (2002) Estimation of diffusion parameters for discretely observed diffusion processes. Bernoulli 8(4):491–508

    MathSciNet  MATH  Google Scholar 

  53. Sriram TN, Vidyashankar AN (2000) Minimum Hellinger distance estimation for supercritical Galton Watson processes. Stat Probab Lett 50:331–342

    MathSciNet  MATH  Google Scholar 

  54. Tjøstheim D (1990) Non-linear time series and Markov chains. Adv Appl Probab A 22:587–611

    MATH  Google Scholar 

  55. Tran LT (1990) Kernel density estimation under dependence. Stat Probab Lett 10:193–201

    MathSciNet  MATH  Google Scholar 

  56. Veretennikov YuA (1997) On polynomial mixing bounds for stochastic differential equations. Stoch Process Appl 70:115–127

    MathSciNet  MATH  Google Scholar 

  57. Vitale RA (1975) A Bernstein polynomial approach to density function estimation. Stat Inference Relat Top 2:87–99

    MathSciNet  MATH  Google Scholar 

  58. Walter GG (1992) Approximation of the delta function by wavelets. J Approx Theory 3:329–343

    MathSciNet  MATH  Google Scholar 

  59. Wegman EJ, Davies HI (1979) Remarks on some recursive estimators of a probability density. Ann Stat 7(2):316–327

    MathSciNet  MATH  Google Scholar 

  60. Wolverton C, Wagner TJ (1969) Asymptotically optimal discriminant functions for pattern classification. IEEE Trans Inform Theory 15:258–265

    MathSciNet  MATH  Google Scholar 

  61. Woo Mi-Ja, Sriram TN (2006) Robust estimation of mixture complexity. J Am Stat Assoc 101:1475–1486

    MathSciNet  MATH  Google Scholar 

  62. Woo Mi-Ja, Sriram TN (2007) Robust estimation of mixture complexity for count data. Comput Stat Data Anal 51:4379–4392

    MathSciNet  MATH  Google Scholar 

  63. Yakowitz S (1989) Nonparametric density and regression estimation for Markov sequences without mixing assumptions. J Multivar Anal 30:124–136

    MathSciNet  MATH  Google Scholar 

  64. Yang S (1991) Minimum Hellinger distance estimation of parameter in the random censorship model. Ann Stat 19:579–602

    MathSciNet  MATH  Google Scholar 

  65. Ying Z (1992) Minimum Hellinger-type distance estimation for censored data. Ann Stat 20:1361–1390

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees and the Editor in Chief for their helpful comments, remarks and suggestions which have led to this substantially improved version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Apala N’drin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N’drin, J.A., Hili, O. Minimum Hellinger Distance Estimation for Discretely Observed Stochastic Processes Using Recursive Kernel Density Estimator. J Stat Theory Pract 16, 41 (2022). https://doi.org/10.1007/s42519-022-00269-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-022-00269-5

Keywords

Mathematics Subject Classification

Navigation