Skip to main content

Advertisement

Log in

Tests for Patterned Alternatives Using Logarithmic Quantile Estimation

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

We investigate the logarithmic quantile estimation (LQE) method using fully nonparametric rank statistics to test for known trend and umbrella patterns in the main effects of three widely used designs: a fixed-effect two-factor model, a mixed-effect repeated measures model, and a mixed-effect cross-classification model. We also test for patterned alternatives in the interaction between the main effect and time in the repeated measures model. We determine the level and power of the test statistics using LQE with simulated and real data. The LQE procedure uses only the data to estimate quantiles of test statistics and does not require the estimation of the asymptotic variance nor the Satterthwaite–Smith degrees of freedom estimation. Our results show that the LQE method commonly yields conservative tests with high power when testing for patterned alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Data created by simulation is reproducible through the use of the set.seed() function in R and will be provided or archived as requested by the publisher.

References

  1. Abrams DI, Goldman AI, Launer C, Korvick JA, Neaton JD, Crane LR et al (1994) A comparative trial of didanosine or zalcitabine after treatment with zidovudine in patients with human immunodeficiency virus infection. N Engl J Med 330(10):657–662

    Article  Google Scholar 

  2. Akritas MG, Arnold SF (1994) Fully nonparametric hypotheses for factorial designs I: Multivariate repeated measures designs. J Am Stat Assoc 89(425):336–343

    Article  MathSciNet  Google Scholar 

  3. Akritas MG, Arnold SF, Brunner E (1997) Nonparametric hypotheses and rank statistics for unbalanced factorial designs. J Am Stat Assoc 92(437):258–265

    Article  MathSciNet  Google Scholar 

  4. Akritas MG, Brunner E (1996) Rank tests for patterned alternatives in factorial designs with interactions. Festschrift on the Occasion of the 65th Birthday of Madam L. Puri. VSP-International Science Publishers, Utrecht, pp 277–288

    Google Scholar 

  5. Akritas MG, Brunner E (1997) A unified approach to rank tests for mixed models. J Stat Plan Inference 61(2):249–277

    Article  MathSciNet  Google Scholar 

  6. Berkes I, Csáki E (2001) A universal result in almost sure central limit theory. Stoch Process Appl 94(1):105–134

    Article  MathSciNet  Google Scholar 

  7. Brosamler GA (1988) An almost everywhere central limit theorem. Math Proc Camb Philos Soc 104(3):561–574

    Article  MathSciNet  Google Scholar 

  8. Brunner E, Denker M (1994) Rank statistics under dependent observations and applications to factorial designs. J Stat Plan Inference 42:353–378

    Article  MathSciNet  Google Scholar 

  9. Brunner E, Domhof S, Langer F (2002) Nonparametric Anal Longitud Data Factorial Des. Wiley-Interscience, NewYork

    MATH  Google Scholar 

  10. Brunner E, Puri ML (1996) 19 Nonparametric methods in design and analysis of experiments. Handb Stat 13:631–703

    Article  Google Scholar 

  11. Brunner E, Puri ML (2001) Nonparametric methods in factorial designs. Stat Pap 42(1):1–52

    Article  MathSciNet  Google Scholar 

  12. Callegari F, Akritas MG (2004) Rank tests for patterned alternatives in two-way non-parametric analysis of variance. J Stat Plan Inference 126(1):1–23

    Article  MathSciNet  Google Scholar 

  13. Denker M, Tabacu L (2014) Testing longitudinal data by logarithmic quantiles. Electron J Stat 8(2):2937–2952

    Article  MathSciNet  Google Scholar 

  14. Denker M, Tabacu L (2015) Logarithmic quantile estimation for rank statistics. J Stat Theory Pract 9(1):146–170

    Article  MathSciNet  Google Scholar 

  15. Fisher A (1987) Convex-invariant means and a pathwise central limit theorem. Adv Math 63(3):213–246

    Article  MathSciNet  Google Scholar 

  16. Fridline M (2010) Almost sure confidence intervals for the correlation coefficient. Dissertation, Case Western Reserve University, Cleveland

  17. Hettmansperger TP, Norton RM (1987) Tests for patterned alternatives in k-sample problems. J Am Stat Assoc 82(397):292–299

    MathSciNet  MATH  Google Scholar 

  18. Jonckheere AR (1954) A distribution-free k-sample test against ordered alternatives. Biometrika 41(1/2):133–145

    Article  MathSciNet  Google Scholar 

  19. Lifshits MA (2001) Lecture notes on almost sure limit theorems. Publ IRMA Lille 54(8):1–23

    Google Scholar 

  20. Montgomery DC (2013) Des Anal Exp. J Wiley and Sons, New York

    Google Scholar 

  21. Page ES (1954) Continuous inspection schemes. Biometrika 41(1/2):100–115

    Article  MathSciNet  Google Scholar 

  22. Rizopoulos D (2010) JM: an R package for the joint modelling of longitudinal and time-to-event data. J Stat Softw 35(9):1–33

    Article  Google Scholar 

  23. Schatte P (1988) On strong versions of the central limit theorem. Math Nachr 137(1):249–256

    Article  MathSciNet  Google Scholar 

  24. Tabacu L (2014) Logarithmic Quantile Estimation and Its Applications to Nonparametric Factorial Designs. Dissertation, The Pennsylvania State University, Pennsylvania

  25. Terpstra TJ (1952) The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking. Indag Math 14:327–333

    Article  MathSciNet  Google Scholar 

  26. Thangavelu K (2005) Quantile estimation based on the almost sure central limit theorem. Dissertation, University of Göttingen, Germany

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation and data analysis were performed by Mark K. Ledbetter. The first draft of the manuscript was written by Mark K. Ledbetter and Lucia Tabacu reviewed and commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Mark K. Ledbetter.

Ethics declarations

Conflicts of interests / Competing interests

The authors declare that they have no conflict of interest.

Code availability

R code files are available and will be provided or archived as requested by the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We sketch the proofs of Propositions 1 and 2 following the ideas from [13, 14]. For convenience, we present here the formulas from [13] that we use in our derivations (see Appendix, page 2948). [13] showed that a simple linear rank statistic based on n independent random vectors of possibly unequal lengths satisfies the almost sure central limit theorem. In our case, we use n independent random vectors of equal length \({{{\mathbf{X_1}}}},\dots ,{{{\mathbf{X_n}}}}\), having components \({{{\mathbf{X_u}}}}=(X_{u1},\) \(\dots ,\) \(X_{um})\) (\(u=1,\dots ,n\)) and \(N(n)=nm\) total number of observations. We now define the simple linear rank statistic (see [14], formulas (6)-(10))

$$\begin{aligned} T_n=\frac{1}{N(n)}\sum _{u=1}^{n}\sum _{v=1}^{m}\lambda _{uv}^{(n)}\frac{R_{uv}(n)}{N(n)+1}-\int _{-\infty }^{\infty }HdF_n, \end{aligned}$$
(31)

which has the following term that appears in its Taylor decomposition

$$\begin{aligned} B_n=\int _{-\infty }^{\infty }Hd({\hat{F}}_n-F_n)+\int _{-\infty }^{\infty }({\hat{H}}_n-H)dF_n, \text { and} \end{aligned}$$
(32)
$$\begin{aligned} \sigma _n^2=N^2(n)Var(B_n). \end{aligned}$$
(33)

\(R_{uv}(n)\) denotes the rank of observation \(X_{uv}\backsim F_{uv}\) among all N(n) random variables, and \(\lambda _{uv}^{(n)}\) are known regression constants with maximum absolute value of one. We define the distribution function weighted by the regression constants for the n independent random vectors

$$\begin{aligned} F_n(x)=\frac{1}{mn}\sum _{u=1}^{n}\sum _{v=1}^{m}\lambda _{uv}^{(n)}F_{uv}(x), \end{aligned}$$
(34)

and its empirical form

$$\begin{aligned} {\hat{F}}_n(x)=\frac{1}{mn}\sum _{u=1}^{n}\sum _{v=1}^{m}\lambda _{uv}^{(n)}{\mathbb {I}}(X_{uv}\le x). \end{aligned}$$
(35)

In the proofs equations (31) through (35) are specified for each model and used to prove the almost sure central limit theorems. The almost sure weak convergence of the linear rank statistic \(T_n\) in equation (31) can be obtained by showing the almost sure weak convergence of \(B_n\) in equation (32). By verifying the conditions in Theorem 3.1 in [19], we obtain the almost sure weak convergence of \(B_n\) in (32) (see Appendix in [13]).

Proof of Proposition 1

In the two-way fixed-effects model introduced in Section 2.1, \(X_{ijk} \backsim F_{ij}\) are independent random variables, and \(N= abn\) is the total number of subjects. We define independent random vectors \({{{\mathbf{X}}}_{{{\mathbf{ik}}}}}= (X_{i1k}, \dots , X_{ibk})'\), \(1\le i\le a\), \(1\le k \le n\). Let \(1\le l\le a\) denote the \(l^{th}\) level of factor A and define

$$\begin{aligned} \lambda _{ij}^{(n)}= {\left\{ \begin{array}{ll} 1, &{} i=l \text {, }j=1,\dots ,b\\ 0, &{} otherwise. \end{array}\right. } \end{aligned}$$
(36)

Equations (34) and (35) become

$$\begin{aligned} F^{(l)}_n(x)= & {} \frac{1}{ab}\sum _{j=1}^{b}F_{lj}(x),\text { and} \\ {\hat{F}}^{(l)}_n(x)= & {} \frac{1}{abn}\sum _{j=1}^{b}\sum _{k=1}^{n}{\mathbb {I}}(X_{ljk}\le x), \end{aligned}$$

which are the average distribution function across the levels of factor B (groups) for a fixed time (\(i=l\)) of factor A, and its empirical analog, respectively. The linear rank statistic is

$$\begin{aligned} T^{(l)}_n=\frac{1}{abn(abn+1)}\sum _{j=1}^{b}\sum _{k=1}^{n}R_{ljk}-\frac{1}{ab}\sum _{j=1}^{b}\int _{-\infty }^{\infty }H(x)dF_{lj}(x), \end{aligned}$$

where H(x) is defined in (1), and

$$\begin{aligned} B^{(l)}_n= & {} \frac{1}{N}\sum _{k=1}^{n} \sum _{j=1}^{b}H(X_{ljk})-\frac{2}{N}\sum _{k=1}^{n}\sum _{j=1}^{b}\int _{-\infty }^{\infty }H(x)dF_{lj}(x) \\&+\frac{1}{N}\sum _{k=1}^{n}\sum _{s=1}^{a}\sum _{j=1}^{b}\int _{-\infty }^{\infty }{\mathbb {I}}(X_{sjk}\le x)d\left( \frac{1}{ab}\sum _{t=1}^{b}F_{lt}(x)\right) . \end{aligned}$$

We note that under \(H_0^F(A)\) in (10) the test statistic \(P_N^{(\text {fix})}(A)\) in (13) can be expressed as

$$\begin{aligned} P_N^{(\text {fix})}(A)=\frac{a(N+1)}{\sqrt{N}}\sum _{i=1}^{a}(w_i-{\bar{w}})T^{(i)}_n. \end{aligned}$$
(37)

The almost sure weak convergence of the vector

$$\begin{aligned} {{\tilde{{{\mathbf{T}}}}}_{{\mathbf{n}}}}=\left( \frac{a(N+1)}{\sqrt{N}}(w_i-{\bar{w}})T^{(i)}_n\right) _{1\le i \le a} \end{aligned}$$
(38)

can be obtained by showing the almost sure weak convergence of the vector

$$\begin{aligned} {{\tilde{{\mathbf{B}}}}_{{\mathbf{n}}}}=\left( \frac{a(N+1)}{\sqrt{N}}(w_i-{\bar{w}})B^{(i)}_n\right) _{1\le i \le a}. \end{aligned}$$
(39)

As in [13], we can express \({{\tilde{{\mathbf{B}}}}_{{\mathbf{n}}}}\) as a sum of a dimensional independent random vectors \({{{\mathbf{Z_k}}}}\), which are bounded with \(E{{{\mathbf{Z_k}}}}={{{\mathbf{0}}}}\)

$$\begin{aligned} {{\tilde{{{\mathbf{B}}}}}_{{\mathbf{n}}}}=\sqrt{\frac{a}{b}}\left( \frac{abn+1}{abn}\right) \frac{1}{\sqrt{n}}\sum _{k=1}^{n}{{{\mathbf{Z_k}}}}, \end{aligned}$$
(40)

where \({\mathbf{Z_k}}\) has components

$$\begin{aligned} Z_{ki}=\\ (w_i-{\bar{w}})\sum _{j=1}^{b}\left[ H(X_{ijk})-2\int HdF_{ij}+\frac{1}{ab}\sum _{s=1}^{a}\int {\mathbb {I}}\left( X_{sjk}\le x\right) d\left( \sum _{t=1}^{b}F_{it}\right) \right] . \end{aligned}$$

By the multivariate central limit theorem (MVCLT) and under Assumption 1, the vector

$$\begin{aligned} {{\tilde{{\mathbf{B}}}}_{{\mathbf{n}}}}\overset{d}{\longrightarrow }{\mathscr {N}}\left( {{{\mathbf{0}}}},\frac{a}{b} {\varvec{{\varSigma }}} \right) ,&\text { as }n\rightarrow \infty . \end{aligned}$$
(41)

It can be verified using Theorem 3.1 of [19] that

$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{\log n}\sum _{k=1}^{n}\frac{1}{k}{\mathbb {I}}\left( \frac{1}{\sqrt{k}}\sum _{l=1}^{k}{{{\mathbf{Z_l}}}}\le {{{\mathbf{x}}}}\right) =G_X({{{\mathbf{x}}}}),\text { }a.s.,\text { }\forall {{{\mathbf{x}}}}\in {\mathbb {R}}^a, \end{aligned}$$
(42)

where \(G_X\) is the distribution function of \({{{\mathbf{X}}}}\backsim {\mathscr {N}}({{{\mathbf{0}}}},{\varvec{{\varSigma }}})\). Lemma 2.2 of [16] implies

$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{\log n}\sum _{k=1}^{n}\frac{1}{k}{\mathbb {I}}\left( {{\tilde{{{\mathbf{B}}}}}_{{\mathbf{k}}}}\le {{\mathbf{x}}}\right) =G_X\left( {{\mathbf{x}}}\sqrt{\frac{a}{b}}\right) ,\text { }a.s.,\text { }\forall {{\mathbf{x}}}\in {\mathbb {R}}^a. \end{aligned}$$
(43)

For the continuous function \(f:{\mathbb {R}}^a\longrightarrow {\mathbb {R}}\), \(f(x_1,\dots ,x_a)=\sum _{i=1}^{a}x_i\), and by [19] and the techniques in [24] equation (43) is equivalent to

$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{\log n}\sum _{k=1}^{n}\frac{1}{k}{\mathbb {I}}\left( f({{\tilde{{\mathbf{T}}}}_{{\mathbf{k}}}})\le x\right) =G_{f(X)}\left( x\sqrt{\frac{a}{b}}\right) ,\text { }a.s.,\text { }\forall x\in {\mathbb {R}}. \end{aligned}$$
(44)

Hence, the almost sure weak convergence of the test statistic (37) follows. \(\square\)

Proof of Proposition 2

Recall that each of the bn subjects in the partial hierarchical model of Section 2.2 can be expressed as independent random vectors \({{{\mathbf{X}}}_{{{\mathbf{jk}}}}}\) \(=\) \(\left( X_{1jk},\dots ,X_{ajk}\right) '\), \(1\le j\le 2, 1\le k\le n\), where \(X_{ijk}\backsim F_{ij}\). For fixed l,v such that \(1\le l \le a\), \(1 \le v \le b\) let

$$\begin{aligned} \lambda _{ij}^{(n)}={\left\{ \begin{array}{ll} 1, &{} i=l, \text { } j=v \\ 0, &{} otherwise. \end{array}\right. } \end{aligned}$$
(45)

Then, the linear rank statistic has the form

$$\begin{aligned} T^{(l,v)}_n=\frac{1}{N}\sum _{k=1}^{n}\frac{R_{lvk}}{N+1}-\frac{n}{N}\int _{-\infty }^{\infty }H(x)dF_{lv}(x), \end{aligned}$$
(46)

and

$$\begin{aligned}&B_n^{(l,v)} \nonumber \\&\quad =\frac{1}{N}\sum _{k=1}^{n}\left[ H(X_{lvk})-2\int HdF_{lv} +\frac{1}{N}\sum _{s=1}^{a}\sum _{t=1}^{b}\sum _{u=1}^{n}\int {\mathbb {I}}\left( X_{stu}\le x\right) dF_{lv}\right] . \end{aligned}$$
(47)

The test statistic in (16) can be written

$$\begin{aligned} P_{bn}^{(ph)}(A)=\sqrt{\frac{a}{b}}\text { } \frac{(abn+1)}{\sqrt{n}}\sum _{i=1}^{a}\sum _{j=1}^{b}(w_i-{\bar{w}}) T_n^{(i,j)}. \end{aligned}$$
(48)

Consider the vectors

$$\begin{aligned} {{\tilde{{\mathbf{T}}}}_{{\mathbf{n}}}}=\left( \frac{\sqrt{a}(N+1)(w_i-{\bar{w}})}{\sqrt{bn}}T_n^{(i,j)}\right) _{1\le i\le a, 1\le j \le b}, \end{aligned}$$
(49)

and

$$\begin{aligned} {{\tilde{{\mathbf{B}}}}_{{\mathbf{n}}}}=\frac{\sqrt{a}(abn+1)}{\sqrt{bn}}\left( w_i-{\bar{w}}) B_n^{(i,j)}\right) _{1\le i \le a, 1\le j \le b}. \end{aligned}$$
(50)

\({{\tilde{{{\mathbf{B}}}}}_{{\mathbf{n}}}}\) can be expressed as a sum of a dimensional independent random vectors

$$\begin{aligned} {{\tilde{{\mathbf{B}}}}_{{\mathbf{n}}}}=\sqrt{\frac{a}{b}}\text { } \frac{(abn+1)}{abn}\frac{1}{\sqrt{n}}\sum _{k=1}^{n} {{{\mathbf{Z_k}}}}, \end{aligned}$$
(51)

where components of the vector \({{{\mathbf{Z_k}}}}\) are

$$\begin{aligned} {{{\mathbf{Z}}}_{{{\mathbf{ki}}}}}=\left( (w_i-{\bar{w}})\left[ H(X_{ijk})+\frac{1}{N}\sum _{s=1}^{a}\sum _{t=1}^{b}\sum _{u=1}^{n}\int {\mathbb {I}}(X_{stu}\le x)dF_{ij}\right] \right) _{1 \le j \le b}, \end{aligned}$$
(52)

for \(1\le i \le a\). By the multivariate central limit theorem (MVCLT) and under Assumption 1, the vector

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{k=1}^{n}{{{\mathbf{Z_k}}}}\rightarrow {\mathscr {N}}({{{\mathbf{0}}}},{\varvec{{\varSigma }}}),&\text { as }n\rightarrow \infty , \end{aligned}$$
(53)

and hence,

$$\begin{aligned} {{\tilde{{\mathbf{B}}}}_{{\mathbf{n}}}}\rightarrow {\mathscr {N}}\left( {{{\mathbf{0}}}},\frac{a}{b}{\varvec{{\varSigma }}}\right) ,&\text { as }n\rightarrow \infty . \end{aligned}$$
(54)

The proof follows as in Proposition 1 by taking the function \(f:{\mathbb {R}}^{ab}\rightarrow {\mathbb {R}}\), \(f(x_1,\dots ,x_{ab})=\sum _{i=1}^{ab}x_i\). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledbetter, M.K., Tabacu, L. Tests for Patterned Alternatives Using Logarithmic Quantile Estimation. J Stat Theory Pract 15, 57 (2021). https://doi.org/10.1007/s42519-021-00194-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-021-00194-z

Keywords

Mathematics Subject Classification

Navigation