Skip to main content
Log in

On Optimal Designs for Clinical Trials: An Updated Review

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

Optimization of clinical trial designs can help investigators achieve higher quality results for the given resource constraints. The present paper gives an overview of optimal designs for various important problems that arise in different stages of clinical drug development, including phase I dose–toxicity studies; phase I/II studies that consider early efficacy and toxicity outcomes simultaneously; phase II dose–response studies driven by multiple comparisons (MCP), modeling techniques (Mod), or their combination (MCP–Mod); phase III randomized controlled multi-arm multi-objective clinical trials to test difference among several treatment groups; and population pharmacokinetics–pharmacodynamics experiments. We find that modern literature is very rich with optimal design methodologies that can be utilized by clinical researchers to improve efficiency of drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson A (2015) Optimum designs for two treatments with unequal variances in the presence of covariates. Biometrika 102(2):494–499

    MathSciNet  MATH  Google Scholar 

  2. Atkinson A, Biswas A (2014) Randomised response-adaptive designs in clinical trials. Chapman & Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  3. Atkinson A, Donev A, Tobias R (2007) Optimum experimental designs, with SAS. Oxford University Press, New York

    MATH  Google Scholar 

  4. Azriel D, Feigin PD (2014) Adaptive designs to maximize power in clinical trials with multiple treatments. Seq Anal 31:60–86

    MathSciNet  MATH  Google Scholar 

  5. Babb J, Rogatko A, Zacks S (1998) Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat Med 17:1103–1120

    MATH  Google Scholar 

  6. Baldi Antognini A (2008) A theoretical analysis of the power of biased coin designs. J Stat Plan Inference 138:1792–1798

    MathSciNet  MATH  Google Scholar 

  7. Baldi Antognini A, Giovagnoli A (2010) Compound optimal allocation for individual and collective ethics in binary clinical trials. Biometrika 97(4):935–946

    MathSciNet  MATH  Google Scholar 

  8. Baldi Antognini A, Giovagnoli A (2015) Adaptive designs for sequential treatment allocation. CRC Press, Boca Raton

    MATH  Google Scholar 

  9. Baldi Antognini A, Novelli M, Zagoraiou M (2018) Optimal designs for testing hypothesis in multiarm clinical trials. Stat Methods Med Res. https://doi.org/10.1177/0962280218797960

    Article  MATH  Google Scholar 

  10. Bandyopadhyay U, Bhattacharya R (2018) An optimal three treatment allocation for binary treatment responses. Stat Biopharm Res 10(4):287–300

    Google Scholar 

  11. Bauer RJ (2018) NONMEM user guide. Introduction to NONMEM 7.4.3. Gaithersburg, MD

  12. Beal SL, Sheiner LB (1982) Estimating population kinetics. Crit Rev Biomed Eng 8(3):195–222

    Google Scholar 

  13. Biedermann S, Dette H, Zhu W (2007) Compound optimal designs for percentile estimation in dose–response models with restricted design intervals. J Stat Plan Inference 137:3838–3847

    MathSciNet  MATH  Google Scholar 

  14. Biswas A, Mandal S (2004) Optimal adaptive designs in phase III clinical trials for continuous responses with covariates. In: Di Bucciano A, Lauter H, Wynn HP (eds) mODa7—Advances in model-oriented design and analysis. Physica-Verlag, Heidelberg, pp 51–58

    Google Scholar 

  15. Biswas A, Mandal S, Bhattacharya R (2011) Multi-treatment optimal response-adaptive designs for phase III clinical trials. J Korean Stat Soc 40:33–44

    MathSciNet  MATH  Google Scholar 

  16. Bornkamp B, Bretz F, Dette H (2011) Response-adaptive dose-finding under model uncertainty. Ann Appl Stat 5(2B):1611–1631

    MathSciNet  MATH  Google Scholar 

  17. Bornkamp B, Bretz F, Dmitrienko A, Enas G, Gaydos B, Hsu CH, König F, Krams M, Liu Q, Neuenschwander B, Parke T, Pinheiro J, Roy A, Sax R, Shen F (2007) Innovative approaches for designing and analyzing adaptive dose-ranging trials. J Biopharm Stat 17(6):965–995

    MathSciNet  Google Scholar 

  18. Bretz F, Pinheiro J, Branson M (2005) Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics 61:738–748

    MathSciNet  MATH  Google Scholar 

  19. Chaloner K, Larntz K (1989) Optimal Bayesian design applied to logistic regression experiments. J Stat Plan Inference 21:191–208

    MathSciNet  MATH  Google Scholar 

  20. Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10:273–304

    MathSciNet  MATH  Google Scholar 

  21. Cheng Q, Yang M (2019) On multiple-objective optimal designs. J Stat Plan Inference 200:87–101

    MathSciNet  MATH  Google Scholar 

  22. Chernoff H (1953) Locally optimal designs for estimating parameters. Ann Math Stat 24:586–602

    MathSciNet  MATH  Google Scholar 

  23. Clertant M, O’Quigley J (2018) Semiparametric dose finding methods. J R Stat Soc B 79(5):1487–1508

    MathSciNet  MATH  Google Scholar 

  24. Clyde M, Chaloner K (1996) The equivalence of constrained and weighted designs in multiple objective design problems. J Amer Stat Assoc 91:1236–1244

    MathSciNet  MATH  Google Scholar 

  25. Cook RD, Fedorov V (1995) Constrained optimization of experimental design. Statistics 26:129–178

    MathSciNet  MATH  Google Scholar 

  26. Cook RD, Wong WK (1994) On the equivalence of constrained and compound optimal designs. J Am Stat Assoc 89:687–692

    MathSciNet  MATH  Google Scholar 

  27. Dette H, Bretz F, Pepelyshev A, Pinheiro J (2008) Optimal designs for dose-finding studies. J Am Stat Assoc 103:1225–1237

    MathSciNet  MATH  Google Scholar 

  28. Dette H, Kiss C, Bevanda M (2010) Optimal designs for the emax, log-linear, and exponential models. Biometrika 97(2):513–518

    MathSciNet  MATH  Google Scholar 

  29. Dragalin V, Bornkamp B, Bretz F, Miller F, Padnamabhan SK, Patel N, Perevozskaya I, Pinheiro J, Smith JR (2010) A simulation study to compare new adaptive dose-ranging designs. Stat Biopharm Res 2(4):487–512

    Google Scholar 

  30. Dragalin V, Fedorov V (2006) Adaptive designs for dose-finding based on efficacy–toxicity response. J Stat Plan Inference 136:1800–1823

    MathSciNet  MATH  Google Scholar 

  31. Dragalin V, Fedorov V, Wu Y (2008) Two-stage designs for dose-finding that accounts for both efficacy and toxicity. Stat Med 27:5156–5176

    MathSciNet  Google Scholar 

  32. Durham SD, Flournoy N, Rosenberger WF (1997) A random walk rule for phase I clinical trials. Biometrics 53:745–760

    MATH  Google Scholar 

  33. Ette EI, Williams PJ (2007) Pharmacometrics: the science of quantitative pharmacology. Wiley, New York

    MATH  Google Scholar 

  34. European Medicines Agency (1994) ICH E4: Dose-response information to support drug registration. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E4/Step4/E4_Guideline.pdf. Accessed 9 Feb 2019

  35. European Medicines Agency (2014) Qualification opinion of MCP-Mod as an efficient statistical methodology for model-based design and analysis of phase II dose finding studies under model uncertainty. https://www.ema.europa.eu/documents/regulatory-procedural-guideline/qualification-opinion-mcp-mod-efficient-statistical-methodology-model-based-design-analysis-phase-ii_en.pdf. Accessed 10 Feb 2019

  36. Fackle Fornius E, Nyquist H (2009) Using the canonical design space to obtain c-optimal designs for the quadratic logistic model. Commun Stat Theory Methods 39(1):144–157

    MathSciNet  MATH  Google Scholar 

  37. Fan SK, Chaloner K (2001) Optimal designs for a continuation-ratio model. In: Atkinson AC, Hackl P, Müller WG (eds) mODa 6—advances in model-oriented design and analysis. Physica-Verlag, Heidelberg, pp 77–86

    Google Scholar 

  38. Fan SK, Chaloner K (2004) Optimal designs and limiting optimal designs for a trinomial response. J Stat Plan Inference 126:347–360

    MathSciNet  MATH  Google Scholar 

  39. Fedorov V (2010) Optimal experimental design. WIREs Comput Stat 2:581–589

    Google Scholar 

  40. Fedorov V, Leonov S (2014) Optimal design for nonlinear response models. CRC Press, Boca Raton

    MATH  Google Scholar 

  41. Feng C, Hu F (2018) Optimal response-adaptive designs based on efficiency, ethic, and cost. Stat Interface 11:99–107

    MathSciNet  MATH  Google Scholar 

  42. Flournoy N, May C, Secchi P (2012) Asymptotically optimal response-adaptive designs for allocating the best treatment: an overview. Int Stat Rev 80(2):293–305

    MathSciNet  MATH  Google Scholar 

  43. Galbete A, Rosenberger WF (2016) On the use of randomization tests following adaptive designs. J Biopharm Stat 26(3):466–474

    Google Scholar 

  44. Gobburu JV (2010) Pharmacometrics 2020. J Clin Pharmacol 50:151–157

    Google Scholar 

  45. Haines L, Perevozskaya I, Rosenberger WF (2003) Bayesian optimal designs for phase I clinical trials. Biometrics 59:591–600

    MathSciNet  MATH  Google Scholar 

  46. Heise MA, Myers RH (1996) Optimal designs for bivariate logistic regression. Biometrics 52(2):613–624

    MATH  Google Scholar 

  47. Hennig S, Nyberg J, Fanta S, Backman JT, Hoppu K, Hooker AC, Karlsson MO (2012) Application of the optimal design approach to improve a pretransplant drug dose finding design for ciclosporin. J Clin Pharmacol 52(3):347–360

    Google Scholar 

  48. Hennig S, Nyberg J, Hooker AC, Karlsson MO (2009) Trial treatment length optimization with an emphasis on disease progression studies. J Clin Pharmacol 49(3):323–335

    Google Scholar 

  49. Hu F, Rosenberger WF (2006) The theory of response-adaptive randomization in clinical trials. Wiley, New York

    MATH  Google Scholar 

  50. Hu F, Zhang L-X (2004) Asymptotic properties of doubly adaptive biased coin designs for multitreatment clinical trials. Ann Stat 32(1):268–301

    MathSciNet  MATH  Google Scholar 

  51. Hu J, Zhu W, Su Y, Wong WK (2010) Controlled optimal design program for the logit dose response model. J Stat Softw 35:6

    Google Scholar 

  52. Hyun SW (2013) Optimal designs for a probit model with a quadratic term. Stat Biopharm Res 5(1):18–26

    Google Scholar 

  53. Hyun SW (2014) Optimal designs for estimating the ED50 when response functions have a downturn. Stat Biopharm Res 6(1):9–15

    Google Scholar 

  54. Jeon Y, Hu F (2010) Optimal adaptive designs for binary response trials with three treatments. Stat Biopharm Res 2:310–318

    Google Scholar 

  55. Jennison C, Turnbull B (2000) Group sequential methods with applications to clinical trials. Chapman & Hall/CRC, New York

    MATH  Google Scholar 

  56. King J, Wong WK (2000) Minimax D-optimal designs for the logistic model. Biometrics 56:1263–1267

    MathSciNet  MATH  Google Scholar 

  57. Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal 49(4):1020–1038

    MathSciNet  MATH  Google Scholar 

  58. Li G, Majumdar D (2008) D-optimal designs for logistic models with three and four parameters. J Stat Plan Inference 138:1950–1959

    MathSciNet  MATH  Google Scholar 

  59. Lindbom L, Pihlgren P, Johnsson EN (2005) PsN Toolkit—a collection of computer intensive statistical methods for non-linear mixed effects modeling using NONMEM. Comput Methods Programs Biomed 79(3):241–257

    Google Scholar 

  60. Lindbom L, Ribbing J, Johnsson EN (2003) Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed 75(2):85–94

    Google Scholar 

  61. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46(3):673–687

    MathSciNet  Google Scholar 

  62. Liu G, Rosenberger WF (2006) Sequential designs for logistic phase I clinical trials. J Biopharm Stat 16(5):605–621

    MathSciNet  Google Scholar 

  63. Magnusdottir BT (2013) c-optimal designs for the bivariate Emax model. In: Usiński D, Atkinson AC, Patan M (eds) mODa 10—advances in model-oriented design and analysis. Springer, Berlin, pp 153–161

    Google Scholar 

  64. Manukyan Z, Rosenberger WF (2010) D-optimal design for a five-parameter logistic model. In: Giovagnoli A, Atkinson AC, Torsney B (eds) mODa 9—advances in model-oriented design and analysis. Physica-Verlag, Heidelberg, pp 17–24

    Google Scholar 

  65. Marschner IC (2007) Optimal design of clinical trials comparing several treatments with a control. Pharm Stat 6:23–33

    Google Scholar 

  66. Mats VA, Rosenberger WF, Flournoy N (1998) Restricted optimality for phase I clinical trials. In: Rosenberger WF, Flournoy N, Wong WK (eds) New developments and applications in experimental design, vol 34. Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hayward, pp 50–61

    Google Scholar 

  67. Matthew T, Sinha BK (2001) Optimal designs for binary data under logistic regression. J Stat Plan Inference 93:295–307

    MathSciNet  MATH  Google Scholar 

  68. McLeish DL, Tosh DH (1990) Sequential design in bioassay. Biometrics 46:103–116

    MathSciNet  MATH  Google Scholar 

  69. Miller F, Guilbaud O, Dette H (2007) Optimal designs for estimating the interesting part of a dose–effect curve. J Biopharm Stat 17(6):1097–1115

    MathSciNet  Google Scholar 

  70. Minkin S (1987) Optimal designs for binary data. J Am Stat Assoc 82:1098–1103

    MathSciNet  Google Scholar 

  71. Nyberg J, Bazzoli C, Ogungbenro K, Aliev A, Leonov S, Duffull S, Hooker AC, Mentré F (2015) Methods and software tools for design evaluation in population pharmacokinetics-pharmacodynamics studies. Br J Clin Pharmacol 79(1):6–17

    Google Scholar 

  72. Nyberg J, Karlsson MO, Hooker AC (2009) Simultaneous optimal experimental design on dose and sample times. J Pharmacokinet Pharmacodyn 36:125–145

    Google Scholar 

  73. Nyberg J, Ueckert S, Strömberg EA, Hennig S, Karlsson MO, Hooker AC (2012) PopED: an extended, parallelized, nonlinear mixed effects models optimal design tool. Comput Methods Programs Biomed 108(2):789–805

    Google Scholar 

  74. O’Quigley J, Iasonos A, Bornkamp B (eds) (2017) Methods for designing, monitoring, and analyzing dose-finding trials. CRC Press, Boca Raton

    MATH  Google Scholar 

  75. O’Quigley J, Pepe M, Fisher L (1990) Continual reassessment method: a practical design for phase I clinical studies in cancer. Biometrics 46:33–48

    MathSciNet  MATH  Google Scholar 

  76. Owen JS, Fielder-Kelly J (2014) Introduction to pharmacokinetic/pharmacodynamic analysis with nonlinear mixed effects models. Wiley, New York

    Google Scholar 

  77. Padmanabhan SK, Dragalin V (2010) Adaptive Dc-optimal designs for dose finding based on a continuous efficacy endpoint. Biom J 52(6):836–852

    MathSciNet  MATH  Google Scholar 

  78. Padmanabhan SK, Hsuan F, Dragalin V (2010) Adaptive penalized D-optimal designs for dose finding based on continuous efficacy and toxicity. Stat Biopharm Res 2(2):182–198

    Google Scholar 

  79. Parker S, Gennings C (2008) Penalized locally optimal experimental designs for nonlinear model. J Agric Biol Environ Stat 13(3):334–354

    MathSciNet  MATH  Google Scholar 

  80. Pronzato L (2010) Penalized optimal adaptive designs for dose finding. J Stat Plan Inference 140:283–296

    MATH  Google Scholar 

  81. Proschan MA, Dodd DE (2019) Re-randomization tests in clinical trials. Stat Med 38(12):2292–2302

    MathSciNet  Google Scholar 

  82. Rabie H, Flournoy N (2004) Optimal designs for contingent response models. In: Di Bucciano A, Lauter H, Wynn HP (eds) mODa 7—advances in model-oriented design and analysis. Physica-Verlag, Heidelberg, pp 133–142

    Google Scholar 

  83. Rabie H, Flournoy N (2013) Optimal designs for contingent response models with application to toxicity–efficacy studies. J Stat Plan Inference 143:1371–1379

    MathSciNet  MATH  Google Scholar 

  84. Rosenberger WF, Canfield GC, Perevozskaya I, Haines LM, Hausner P (2005) Development of interactive software for Bayesian optimal phase 1 clinical trial design. Drug Inf J 39:89–98

    Google Scholar 

  85. Rosenberger WF, Haines LM, Perevozskaya I (2001) Constrained Bayesian optimal designs for phase I clinical trials: continuous dose space. In: Atkinson AC, Hackl P, Müller WG (eds) mODa 6—advances in model-oriented design and analysis. Physica-Verlag, Heidelberg, pp 225–233

    Google Scholar 

  86. Rosenberger WF, Hu F (2004) Maximizing power and minimizing treatment failures in clinical trials. Clin Trials 1:141–147

    Google Scholar 

  87. Rosenberger WF, Stallard N, Ivanova A, Harper CN, Ricks ML (2001) Optimal adaptive designs for binary response trials. Biometrics 57:909–913

    MathSciNet  MATH  Google Scholar 

  88. Rosenberger WF, Sverdlov O (2008) Handling covariates in the design of clinical trials. Stat Sci 23(3):404–419

    MathSciNet  MATH  Google Scholar 

  89. Rosenberger WF, Sverdlov O, Hu F (2012) Adaptive randomization for clinical trials. J Biopharm Stat 22(4):719–736

    MathSciNet  Google Scholar 

  90. Rosenberger WF, Uschner D, Wang Y (2019) Randomization: the forgotten component of the randomized clinical trial. Stat Med 38:1–12

    MathSciNet  Google Scholar 

  91. Roth K (2012) Sequential designs for dose escalation studies in oncology. Commun Stat Simul Comput 41(7):1131–1141

    MathSciNet  MATH  Google Scholar 

  92. Roy A, Ghosal S, Rosenberger WF (2009) Convergence properties of sequential Bayesian D-optimal designs. J Stat Plan Inference 139:425–440

    MathSciNet  MATH  Google Scholar 

  93. Rubinstein RY, Kroese DP (2017) Simulation and the Monte Carlo method. Wiley, New York

    MATH  Google Scholar 

  94. Ryeznik Y, Sverdlov O, Hooker A (2018) Adaptive optimal designs for dose-finding studies with time-to-event outcomes. AAPS J 20(1):24

    Google Scholar 

  95. Ryeznik Y, Sverdlov O, Hooker A (2018) Implementing optimal designs for dose–response studies through adaptive randomization for a small population group. AAPS J 20(5):85

    Google Scholar 

  96. Schou IM, Marschner IC (2017) Design of clinical trials involving multiple hypothesis tests with a common control. Biom J 59(4):636–657

    MathSciNet  MATH  Google Scholar 

  97. Selmaj K, Li DK, Hartung HP, Hemmer B, Kappos L, Freedman MS, Stüve O, Riekmann P, Montalban X, Ziemssen T, Auberson LZ, Pohlmann H, Mercier F, Dahlke F, Wallström E (2019) Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol 12(8):756–767

    Google Scholar 

  98. Sheiner LB, Rosenberg B, Marathe VV (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 5:445–479

    Google Scholar 

  99. Silber HE, Nyberg J, Hooker AC, Karlsson MO (2009) Optimization of the intravenous glucose tolerance test in T2DM patients using optimal experimental design. J Pharmacokinet Pharmacodyn 36:281–295

    Google Scholar 

  100. Simon R, Simon NR (2010) Using randomization tests to preserve type 1 error with response-adaptive and covariate-adaptive randomization. Stat Probab Lett 81(7):767–772

    MathSciNet  MATH  Google Scholar 

  101. Sitter RR (1992) Robust designs for binary data. Biometrics 48(4):1145–1155

    MathSciNet  Google Scholar 

  102. Sitter RR, Fainaru I (1997) Optimal designs for the logit and probit models for binary data. Can J Stat 25(2):175–190

    MathSciNet  MATH  Google Scholar 

  103. Sitter RR, Forbes BE (1997) Optimal two-stage designs for binary response experiments. Stat Sin 7:941–955

    MathSciNet  MATH  Google Scholar 

  104. Sitter RR, Wu CFJ (1993) Optimal designs for binary response experiments: Fieller, D, and A criteria. Scand J Stat 20(4):329–341

    MathSciNet  MATH  Google Scholar 

  105. Stegmann G, Jacobucci R, Harring JR, Grimm KJ (2018) Nonlinear mixed-effects modeling programs in R. Struct Eq Model Multidiscip J 25(1):160–165

    Google Scholar 

  106. Strömberg EA (2016) Applied adaptive optimal design and novel optimization algorithms for practical use. Uppsala University. Retrieved from simulated model based adaptive optimal design using FDA stopping criteria. An adults to children bridging study example: https://www.page-meeting.org/pdf_assets/7437-MBAOD_simulation_ES_2.pdf

  107. Strömberg EA, Hooker AC (2017) The effect of using a robust optimality criterion in model based adaptive optimization. J Pharmacokinet Pharmacodyn 44:317–324

    Google Scholar 

  108. Sverdlov O, Gao L (2017) Phase I/II dose-finding designs with efficacy and safety endpoints. In: O’Quigley J, Iasonos A, Bornkamp B (eds) Methods for designing, monitoring, and analyzing dose-finding trials. CRC Press, Boca Raton, FL, pp 81–107

    Google Scholar 

  109. Sverdlov O, Rosenberger WF (2013) On recent advances in optimal allocation designs in clinical trials. J Stat Theory Pract 7(4):753–773

    MathSciNet  MATH  Google Scholar 

  110. Sverdlov O, Ryeznik Y (2019) Implementing unequal randomization in clinical trials with heterogeneous treatment costs. Stat Med 38:2905–2927

    MathSciNet  Google Scholar 

  111. Sverdlov O, Tymofyeyev Y, Wong WK (2011) Optimal response-adaptive randomized designs for multi-armed survival trials. Stat Med 30:2890–2910

    MathSciNet  Google Scholar 

  112. Sverdlov O, Wong WK, Ryeznik Y (2014) Adaptive clinical trial designs for phase I cancer studies. Stat Surv 8:2–44

    MathSciNet  MATH  Google Scholar 

  113. Thall PF, Wathen JK (2007) Practical Bayesian adaptive randomisation in clinical trials. Eur J Cancer 43:859–866

    Google Scholar 

  114. Thompson WR (1933) On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3/4):285–294

    MATH  Google Scholar 

  115. Tymofyeyev Y, Rosenberger WF, Hu F (2007) Implementing optimal allocation in sequential binary response experiments. J Am Stat Assoc 102:224–234

    MathSciNet  MATH  Google Scholar 

  116. Villar SS, Bowden J, Wason J (2018) Response-adaptive designs for binary responses: How to offer patient benefit while being robust to time trends? Pharm Stat 17:182–197

    Google Scholar 

  117. Wang Y (2007) Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn 34(5):575–593

    Google Scholar 

  118. Wang Y, Ai M (2016) Optimal designs for multiple treatments with unequal variances. J Stat Plan Inference 171:175–183

    MathSciNet  MATH  Google Scholar 

  119. Warfield J, Roy A (2013) A semiparametric sequential algorithm for estimation of dose–response curve. Seq Anal 32:196–213

    MathSciNet  MATH  Google Scholar 

  120. Wong WK (1999) Recent advances in multiple-objective design strategies. Stat Neerl 53:257–276

    MATH  Google Scholar 

  121. Wong WK (2013) Web-based tools for finding optimal designs in biomedical studies. Comput Methods Progr Biomed 111:701–710

    Google Scholar 

  122. Wong WK, Zhu W (2008) Optimum treatment allocation rules under a variance heterogeneity model. Stat Med 27:4581–4595

    MathSciNet  Google Scholar 

  123. Woodcock J, LaVange L (2017) Master protocols to study multiple therapies, multiple diseases, or both. New Engl J Med 377:62–70

    Google Scholar 

  124. Wu CFJ (1988) Optimal design for percentile estimation of a quantal response curve. In: Dodge Y, Fedorov V, Wynn HP (eds) Optimal design and analysis of experiments. Elsevier Science, North Holland, pp 213–223

    Google Scholar 

  125. Yang M, Biedermann S, Tang E (2013) On optimal designs for nonlinear models: a general and efficient algorithm. J Am Stat Assoc 108(504):1411–1420

    MathSciNet  MATH  Google Scholar 

  126. Yang M, Stufken J (2009) Support points of locally optimal designs for nonlinear models with two parameters. Ann Stat 37(1):518–541

    MathSciNet  MATH  Google Scholar 

  127. Yi Y, Yuan Y (2013) An optimal allocation for response-adaptive designs. J Appl Stat 40(9):1996–2008

    MathSciNet  Google Scholar 

  128. Yuan Y, Nguyen HQ, Thall PF (2016) Bayesian designs for phase I-II clinical trials. CRC Press, Boca Raton

    MATH  Google Scholar 

  129. Zhang L, Rosenberger WF (2006) Response-adaptive randomization for clinical trials with continuous outcomes. Biometrics 62:562–569

    MathSciNet  MATH  Google Scholar 

  130. Zhang L, Rosenberger WF (2007) Response-adaptive randomization for survival trials: the parametric approach. Appl Stat 56(2):153–165

    MathSciNet  MATH  Google Scholar 

  131. Zhu H, Hu F (2009) Implementing optimal allocation for sequential continuous responses with multiple treatments. J Stat Plan Inference 139:2420–2430

    MathSciNet  MATH  Google Scholar 

  132. Zhu W, Wong WK (2001) Bayesian optimal designs for estimating a set of symmetrical quantiles. Stat Med 20:123–137

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank three anonymous reviewers for their constructive comments that have helped improve the original version of the manuscript. Wong was partially supported by a grant from the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM107639. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weng Kee Wong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Part of special issue guest edited by Pritam Ranjan and Min Yang--- Algorithms, Analysis and Advanced Methodologies in the Design of Experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sverdlov, O., Ryeznik, Y. & Wong, W.K. On Optimal Designs for Clinical Trials: An Updated Review. J Stat Theory Pract 14, 10 (2020). https://doi.org/10.1007/s42519-019-0073-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42519-019-0073-4

Keywords

Navigation