Skip to main content
Log in

An Introduction to Operator Preconditioning for the Fast Iterative Integral Equation Solution of Time-Harmonic Scattering Problems

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide an introduction to the improved iterative Krylov solution of boundary integral equations for time-harmonic scattering problems arising in acoustics, electromagnetism and elasticity. From the point of view of computational methods, considering large frequencies is a challenging issue in engineering since it leads to solving highly indefinite large scale complex linear systems which generally implies a convergence breakdown of iterative methods. More specifically, we explain the problematic and some partial solutions through analytical preconditioning for high-frequency acoustic scattering problems and the introduction of new combined field integral equations. We complete the paper with some recent extensions to the case of electromagnetic and elastic waves equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1974)

    MATH  Google Scholar 

  2. S.B. Adrian, F.P. Andriulli, T.F. Eibert, A hierarchical preconditioner for the electric field integral equation on unstructured meshes based on primal and dual Haar bases. J. Comput. Phys. 330, 365–379 (2017)

    MathSciNet  MATH  Google Scholar 

  3. S.B. Adrian, F.P. Andriulli, T.F. Eibert, On a refinement-free Calderon multiplicative preconditioner for the electric field integral equation. J. Comput. Phys. 376, 1232–1252 (2019)

    MathSciNet  MATH  Google Scholar 

  4. F. Alouges, S. Borel, D. Levadoux, A stable well-conditioned integral equation for electromagnetism scattering. J. Comput. Appl. Math. 204(2), 440–451 (2007)

    MathSciNet  MATH  Google Scholar 

  5. S. Amini, On the choice of the coupling parameter in boundary integral formulations of the exterior acoustic problem. Appl. Anal. 35(1–4), 75–92 (1990)

    MathSciNet  MATH  Google Scholar 

  6. S. Amini, S.M. Kirkup, Solution of Helmholtz equation in exterior domain by elementary boundary integral equations. J. Comput. Phys. 118, 208–221 (1995)

    MathSciNet  MATH  Google Scholar 

  7. F.P. Andriulli, K. Cools, K. Bagci, F. Olyslager, A. Buffa, S. Christiansen, E. Michielssen, A multiplicative Calderon preconditioner for the electric field integral equation. IEEE Trans. Antennas Propag. 56(8,1), 2398–2412 (2008)

    MathSciNet  MATH  Google Scholar 

  8. F.P. Andriulli, K. Cools, I. Bogaert, E. Michielssen, On a well-conditioned electric field integral operator for multiply connected geometries. IEEE Trans. Antennas Propag. 61(4, 2), 2077–2087 (2013)

    MathSciNet  MATH  Google Scholar 

  9. X. Antoine, Conditions de Radiation sur le Bord, Ph.D. Thesis, University of Pau (1997)

  10. X. Antoine, Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method. IMA J. Appl. Math. 66, 83–110 (2001)

    MathSciNet  MATH  Google Scholar 

  11. X. Antoine, Advances in the on-surface radiation condition method: theory, numerics and applications, in Book Chapter in Computational Methods for Acoustics Problems, ed. by F. Magoulès (Saxe-Coburg Publications, 2008), pp. 169–194 (ISBN: 978-1-874672-30-2)

  12. X. Antoine, H. Barucq, A. Bendali, Bayliss–Turkel-like radiation condition on surfaces of arbitrary shape. J. Math. Anal. Appl. 229, 184–211 (1999)

    MathSciNet  MATH  Google Scholar 

  13. X. Antoine, A. Bendali, M. Darbas, Analytic preconditioners for the electric field integral equation. Int. J. Numer. Methods Eng. 61, 1310–1331 (2004)

    MathSciNet  MATH  Google Scholar 

  14. X. Antoine, A. Bendali, M. Darbas, Analytic preconditioners for the boundary integral solution of the scattering of acoustic waves by open surfaces. J. Comput. Acoust. 13(3), 477–498 (2005)

    MathSciNet  MATH  Google Scholar 

  15. X. Antoine, Y. Boubendir, An integral preconditioner for solving the two-dimensional scattering transmission problem using integral equations. Int. J. Comput. Math. 85(10), 1473–1490 (2008)

    MathSciNet  MATH  Google Scholar 

  16. X. Antoine, M. Darbas, Alternative integral equations for the iterative solution of acoustic scattering problems. Q. J. Mech. Appl. Math. 58, 107–128 (2005)

    MathSciNet  MATH  Google Scholar 

  17. X. Antoine, M. Darbas, Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation. Math. Model. Numer. Anal. 41(1), 147–167 (2007)

    MathSciNet  MATH  Google Scholar 

  18. X. Antoine, M. Darbas, Y.Y. Lu, An improved surface radiation condition for high-frequency acoustics scattering problems. Comput. Methods Appl. Mech. Eng. 195(33–36), 4060–4074 (2006)

    MathSciNet  MATH  Google Scholar 

  19. X. Antoine, C. Geuzaine, K. Ramdani, Computational methods for multiple scattering at high frequency with applications to periodic structures calculations, in Wave Propagation in Periodic Media-Analysis, Numerical Techniques and Practical Applications, Progress in Computational Physics, ed. by M. Ehrhardt, vol. 1 (Bentham Science Publishers Ltd, 2009)

  20. A. Arnand, J.S. Ovall, C. Turc, Well-conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners. J. Integral Equ. Appl. 24(3), 321–358 (2012)

    MathSciNet  MATH  Google Scholar 

  21. H. Bagci, F.P. Andriulli, K. Cools, F. Olyslager, E. Michielssen, A Calderon multiplicative preconditioner for the combined field integral equation. IEEE Trans. Antennas Propag. 57(10), 3387–3392 (2009)

    MathSciNet  MATH  Google Scholar 

  22. A. Bayliss, C.I. Goldstein, E. Turkel, An iterative method for the Helmholtz equation. J. Comput. Phys. 49, 443–457 (1983)

    MathSciNet  MATH  Google Scholar 

  23. A. Bendali, M. Fares, Boundary integral equations methods in acoustic scattering, in Computational Acoustics, ed. by F. Magoules, Saxe-Coburg Edition (2008), pp. 1–36

  24. M. Benzi, Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182(1), 418–477 (2002)

    MathSciNet  MATH  Google Scholar 

  25. M. Bollhoefer, M.J. Grote, O. Schenk, Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media. SIAM J. Sci. Comput. 31(5), 3781–3805 (2009)

    MathSciNet  MATH  Google Scholar 

  26. S. Borel, D.P. Levadoux, F. Alouges, A new well-conditioned integral formulation for Maxwell equations in three dimensions. IEEE Trans. Antennas Propag. 53(9), 2995–3004 (2005)

    MathSciNet  MATH  Google Scholar 

  27. S. Börm, L. Grasedyck, W. Hackbusch, Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem. 27(5), 405–422 (2003)

    MATH  Google Scholar 

  28. Y. Boubendir, O.P. Bruno, D. Levadoux, C. Turc, Integral equations requiring small numbers of Krylov-subspace iterations for two-dimensional smooth penetrable scattering problems. Appl. Numer. Math. 95(SI), 82–98 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Y. Boubendir, V. Dominguez, D. Levadoux, C. Turc, Regularized combined field integral equations for acoustic transmission problems. SIAM J. Appl. Math. 75(3), 929–952 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Y. Boubendir, C. Turc, Well-conditioned boundary integral equation formulations for the solution of high-frequency electromagnetic scattering problems. Comput. Math. Appl. 67(10), 1772–1805 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Y. Boubendir, C. Turc, V. Dominguez, High-order Nystrom discretizations for the solution of integral equation formulations of two-dimensional Helmholtz transmission problems. IMA J. Numer. Anal. 36(1), 463–492 (2016)

    MathSciNet  MATH  Google Scholar 

  32. H. Brakhage, P. Werner, Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Numer. Math. 16, 325–329 (1965)

    MATH  Google Scholar 

  33. O.P. Bruno, T. Elling, R. Paffenroth, C. Turc, Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations. J. Comput. Phys. 228(17), 6169–6183 (2009)

    MathSciNet  MATH  Google Scholar 

  34. O.P. Bruno, T. Elling, C. Turc, Regularized integral equations and fast high-order solvers for sound-hard acoustic scattering problems. Int. J. Numer. Methods Eng. 91(10), 1045–1072 (2012)

    MathSciNet  Google Scholar 

  35. O.P. Bruno, C. Geuzaine, An \(\cal{O}(1)\) integration scheme for three-dimensional surface scattering problems. J. Comput. Appl. Math. 204, 463–476 (2007)

    MathSciNet  MATH  Google Scholar 

  36. O. Bruno, C. Geuzaine, J. Monro Jr., F. Reitich, Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R. Soc. (Ser. A Math. Phys. Eng. Sci.) 362(1816), 629–645 (2004)

    MathSciNet  MATH  Google Scholar 

  37. O.P. Bruno, L.A. Kunyansky, High-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169, 80–110 (2001)

    MathSciNet  MATH  Google Scholar 

  38. O.P. Bruno, T. Yin, Regularized integral equation methods for elastic scattering problems in three dimensions. J. Comput. Phys. 410, 109350 (2020)

    MathSciNet  MATH  Google Scholar 

  39. A. Buffa, R. Hiptmair, Regularized combined field integral equations. Numer. Math. 100(1), 1–19 (2005)

    MathSciNet  MATH  Google Scholar 

  40. A. Buffa, S.A. Sauter, On the acoustic single layer potential: stabilization and Fourier analysis. SIAM J. Sci. Comput. 28, 1974–1999 (2006)

    MathSciNet  MATH  Google Scholar 

  41. A.J. Burton, G.F. Miller, The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc. R. Soc. Lond. Ser. A 323, 201–210 (1971)

    MathSciNet  MATH  Google Scholar 

  42. B. Carpinteri, Preconditioning for large-scale boundary integral equations in electromagnetics. IEEE Trans. Antennas Propag. 56(6), 338–345 (2014)

    Google Scholar 

  43. B. Carpentieri, I.S. Duff, L. Giraud, Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetics. Numer. Linear Algebra Appl. 7, 667–685 (2000)

    MathSciNet  MATH  Google Scholar 

  44. B. Carpentieri, I.S. Duff, L. Giraud, Experiments with sparse approximate preconditioning of dense linear problems form electromagnetic applications, Tech. Rep. TR/PA/00/04, CERFACS, France, (2000)

  45. B. Caudron, X. Antoine, C. Geuzaine, Optimized weak coupling of boundary element and finite element methods for acoustic scattering. J. Comput. Phys. 421, 109737 (2020)

    MathSciNet  Google Scholar 

  46. S. Chaillat, M. Bonnet, Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics. Wave Motion 50, 1090–1104 (2013)

    MathSciNet  MATH  Google Scholar 

  47. S. Chaillat, M. Bonnet, J.F. Semblat, A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain. Comput. Methods Appl. Mech. Eng. 197, 4233–4249 (2008)

    MATH  Google Scholar 

  48. S. Chaillat, M. Darbas, F. Le Louër, Approximate local Dirichlet-to-Neumann map for three-dimensional time-harmonic elastic waves. Comput. Methods Appl. Mech. Eng. 297, 62–83 (2015)

    MathSciNet  MATH  Google Scholar 

  49. S. Chaillat, M. Darbas, F. Le Louër, Fast iterative boundary element methods for high-frequency scattering problems in 3D elastodynamics. J. Comput. Phys. 341, 429–446 (2017)

    MathSciNet  MATH  Google Scholar 

  50. S. Chaillat, M. Darbas, F. Le Louër, Analytical preconditioners for Neumann elastodynamic boundary element methods (Under revision)

  51. S.N. Chandler-Wilde, I.G. Graham, S. Langdon, M. Lindner, Condition number estimates for combined potential boundary integral operators in acoustic scattering. J. Int. Equ. Appl. 21(2), 229–279 (2009)

    MathSciNet  MATH  Google Scholar 

  52. W.C. Chew, J.M. Jin, E. Michielssen, J. Song, Fast and Efficient Algorithms in Computational Electromagnetics (Artech House Antennas and Propagation Library, Norwood, 2001)

    Google Scholar 

  53. S.H. Christiansen, Résolution des Equations Intégrales pour la Diffraction d’Ondes Acoustiques et Electromagnétiques. Stabilisation d’Algorithmes Itératifs et Aspects de l’Analyse Numérique, Ph.D. Thesis, Ecole Polytechnique, Palaiseau, France (2001)

  54. S.H. Christiansen, J.C. Nédélec, A preconditioner for the electric field integral equation based on Calderon formulas. SIAM J. Numer. Anal. 40(3), 1100–1135 (2002)

    MathSciNet  MATH  Google Scholar 

  55. X. Clayes, R. Hiptmair, Multi-trace boundary integral formulation for acoustic scattering by composite structures. Commun. Pure Appl. Math. 66(8), 1163–1201 (2013)

    MathSciNet  MATH  Google Scholar 

  56. R. Coifman, V. Rokhlin, S. Wandzura, The fast multipole method for the wave equation: a pedestrian description. IEEE Trans. Antennas Propag. 35(3), 7–12 (1993)

    Google Scholar 

  57. D.L. Colton, R. Kress, Integral Equation Methods in Scattering Theory, Pure and Applied Mathematics (Wiley, New York, 1983)

    MATH  Google Scholar 

  58. M. Costabel, Integral equation methods in scattering theory. SIAM J. Math. Anal. 19, 613–626 (1988)

    MathSciNet  MATH  Google Scholar 

  59. M. Darbas, Préconditionneurs Analytiques de Type Calderon pour les Formulations Intégrales des Problèmes de Diffraction d’Ondes, Ph.D. Thesis, Toulouse (2004)

  60. M. Darbas, Generalized combined field integral equations for the iterative solution of the three-dimensional Maxwell equations. Appl. Math. Lett. 19(8), 834–839 (2006)

    MathSciNet  MATH  Google Scholar 

  61. M. Darbas, E. Darrigrand, Y. Lafranche, Combining OSRC preconditioning and fast multipole method for the Helmholtz equation. J. Comput. Phys. 236, 289–316 (2013)

    MathSciNet  MATH  Google Scholar 

  62. M. Darbas, F. Le Louër, Well-conditioned boundary integral formulations for the iterative solution of elastic scattering problems. Math. Methods Appl. Sci. 38, 1705–1733 (2015)

    MathSciNet  MATH  Google Scholar 

  63. E. Darrigrand, Couplage Méthodes Multipôles Rapides et Discrétisation Microlocale pour les Equations Intégrales de l’Electromagnétisme, Ph.D. Thesis, Bordeaux (2002)

  64. E. Darve, Méthodes Multipôles Rapides: Résolution des Equations de Maxwell par Formulations Intégrales, Ph.D. Thesis, Paris 6 (1999)

  65. M. El Bouajaji, X. Antoine, C. Geuzaine, Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell’s equations. J. Comput. Phys. 279(15), 241–260 (2014)

    MathSciNet  MATH  Google Scholar 

  66. S. Engleder, O. Steinbach, Stabilized boundary element methods for exterior Helmholtz problems. Numer. Math. 110, 145–160 (2008)

    MathSciNet  MATH  Google Scholar 

  67. Y.A. Erlangga, C. Vuik, C.W. Oosterlee, On a class of preconditioners for the Helmholtz equation. Appl. Numer. Math. 50, 409–425 (2004)

    MathSciNet  MATH  Google Scholar 

  68. P. Escapil-Inchauspe, C. Jerez-Hanckes, Fast Calderon preconditioning for the electric field integral equation. IEEE Trans. Antennas Propag. 67(4, 2), 2555–2564 (2019)

    Google Scholar 

  69. I. Fierro, C. Jerez-Hanckes, Fast Calderon preconditioning for Helmholtz boundary integral equations. J. Comp. Phys. 409, 109355 (2020)

    MathSciNet  MATH  Google Scholar 

  70. L. Giraud, J. Langou, M. Rozloznik, The loss of orthogonality in the Gram-Schmidt orthogonalization process. Comput. Math. Appl. 50(7), 1069–1075 (2005)

    MathSciNet  MATH  Google Scholar 

  71. A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers in Applied Mathematics, vol. 27 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1997)

    MATH  Google Scholar 

  72. L. Greengard, V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    MathSciNet  MATH  Google Scholar 

  73. M.J. Grote, T. Huckle, Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18(3), 838–853 (1997)

    MathSciNet  MATH  Google Scholar 

  74. W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis. Springer Series in Computational Mathematics, vol. 49 (Springer, Heidelberg, 2015)

    Google Scholar 

  75. S.R. Haqshenas, P. Gélat, E. van’t Wout, T. Betcke, N. Saffari, A fast full-wave solver for calculating ultrasound propagation in the body. Ultrasonics 110, 106240 (2021)

    Google Scholar 

  76. R.F. Harrington, J.R. Mautz, H-field, E-field and combined field solution for conducting bodies of revolution. Arch. Elektron. Übertragungstech (AEÜ) 32(4), 157–164 (1978)

    Google Scholar 

  77. R. Hiptmair, C. Jerez-Hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems. Adv. Comput. Math. 37(1), 39–91 (2012)

    MathSciNet  MATH  Google Scholar 

  78. P.L. Ho, Y.Y. Lu, Improving the beam propagation method for TM polarization. Opt. Quantum Electron. 35(4), 507–519 (2003)

    Google Scholar 

  79. G.C. Hsiao, W.L. Wendland, Boundary Integral Equations. Applied Mathematical Sciences, vol. 164 (Springer, Berlin, 2008)

    Google Scholar 

  80. H. Isakari, K. Niino, H. Yoshikawa, N. Nishimura, Calderon’s preconditioning for periodic fast multipole method for elastodynamics in 3D. Int. J. Numer. Methods Eng. 90(4), 484–505 (2012)

    MathSciNet  MATH  Google Scholar 

  81. D.S. Jones, An approximate boundary condition in acoustics. J. Sound Vib. 121(1), 37–45 (1988)

    MATH  Google Scholar 

  82. R. Kerchroud, A. Soulaimani, X. Antoine, Performance study of plane wave finite element methods with a Padé-type artificial boundary condition in acoustic scattering. Adv. Eng. Soft. 40, 738–750 (2009)

    MATH  Google Scholar 

  83. R. Kerchroud, A. Soulaimani, Y. Saad, Preconditioning techniques for the solution of the Helmholtz equation by the finite element method. Math. Comput. Simul. 65(4–5), 303–321 (2004)

    MathSciNet  MATH  Google Scholar 

  84. B. Kim, J.W. Kang, A time-domain formulation of elastic waves in heterogeneous unbounded domains. Multiscale Sci. Eng. 1, 220–235 (2019)

    Google Scholar 

  85. S. Kirkup, The boundary element method in acoustics: a survey. Appl. Sci. (2019). https://doi.org/10.3390/app9081642

    Article  Google Scholar 

  86. A. Kleanthous, T. Betcke, D.P. Hewett, P. Escapil-Inchauspé, C. Jerez-Hanckes, A.J. Baran, Accelerated Calderón preconditioning for Maxwell transmission problems. arXiv:2008.04772

  87. A. Kleanthous, T. Betcke, D.P. Hewett, M.W. Scroggs, A.J. Baran, Calderon preconditioning of PMCHWT boundary integral equations for scattering by multiple absorbing dielectric particles. J. Quant. Spectrosc. Radiat. Transf. 224, 383–395 (2019)

    Google Scholar 

  88. F. Kpadonou, S. Chaillat, P. Ciarlet, On the efficiency of nested GMRES preconditioners for 3D acoustic and elastodynamic H-matrix accelerated Boundary Element Methods. Comput. Math. Appl. 80(3), 471–489 (2020)

    MathSciNet  MATH  Google Scholar 

  89. V.D. Kupradze, Potential Methods in the Theory of Elasticity Translated from the Russian by H. Gutfreund. Translation edited by I. Meroz, Israel Program for Scientific Translations, Jerusalem (1965)

  90. V.D. Kupradze, T.G. Gegelia, M.O. Basheleĭshvilii, T.V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, in Applied Mathematics and Mechanics vol. 25 of North-Holland Series ed. by V.D. Kupradze, (North-Holland Publishing Co., Amsterdam 1979)

  91. R. Kress, Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Quart. J. Mech. Appl. Math. 38(2), 323–341 (1985)

    MathSciNet  MATH  Google Scholar 

  92. R. Kress, Linear Integral Equations. Applied Mathematical Sciences, vol. 82, 2nd edn. (Springer, New York, 1999)

    Google Scholar 

  93. R. Kress, W.T. Spassov, On the condition number of boundary integral operators for the exterior Dirichlet problem for the Helmholtz equation. Numer. Math. 42(1), 77–95 (1983)

    MathSciNet  MATH  Google Scholar 

  94. G.A. Kriegsmann, A. Taflove, K.R. Umashankar, A new formulation of electromagnetic wave scattering using the on-surface radiation condition method. IEEE Trans. Antennas Propag. 35, 153–161 (1987)

    MATH  Google Scholar 

  95. S. Lang, Linear Algebra, 3rd edn. (Springer, Berlin, 2004)

    Google Scholar 

  96. D.P. Levadoux, Etude d’une Equation Intégrale Adaptée à la Résolution Hautes Fréquences de l’Equation de Helmholtz, Ph.D. Thesis, Université Paris VI (2001)

  97. D.P. Levadoux, Stable integral equations for the iterative solution of electromagnetic scattering problems. Comptes Rendus Physique 7(5), 518–532 (2006)

    Google Scholar 

  98. D.P. Levadoux, Some preconditioners for the CFIE equation of electromagnetism. Math. Methods Appl. Sci. 31(17), 2015–2028 (2008)

    MathSciNet  MATH  Google Scholar 

  99. J. Liesen, P. Tichy, Convergence analysis of Krylov subspace methods. GAMM Mitteilungen 27(2), 153–173 (2004)

    MathSciNet  MATH  Google Scholar 

  100. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  101. Y. Mao, J. Niu, Q. Zhan, R. Zhang, W. Huang, Q.H. Liu, Calderon preconditioned spectral-element spectral-integral method for doubly periodic structures in layered media. IEEE Trans. Antennas Propag. 68(7), 5524–5533 (2020)

    Google Scholar 

  102. F.A. Milinazzo, C.A. Zala, G.H. Brooke, Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. 101(2), 760–766 (1997)

    Google Scholar 

  103. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, New York, 2003)

    MATH  Google Scholar 

  104. J.-C. Nédélec, Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol. 144 (Springer, New York, 2001)

    Google Scholar 

  105. D. Osei-Kuffuor, Y. Saad, Preconditioning Helmholtz linear systems. Appl. Numer. Math. 60(4), 420–431 (2010)

    MathSciNet  MATH  Google Scholar 

  106. Z. Peng, R. Hiptmair, Y. Shao, B. MacKie-Mason, Domain decomposition preconditioning for surface integral equations in solving challenging electromagnetic scattering problems. IEEE Trans. Antennas Propag. 64(1), 210–223 (2016)

    MathSciNet  MATH  Google Scholar 

  107. Z. Peng, X.-C. Wang, J.-F. Lee, Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects. IEEE Trans. Antennas Propag 59(9), 3328–3338 (2011)

    MathSciNet  MATH  Google Scholar 

  108. V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86(2), 414–439 (1990)

    MathSciNet  MATH  Google Scholar 

  109. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Publishing Company, Boston, 1996)

    MATH  Google Scholar 

  110. Y. Saad, M.H. Schultz, A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7(3), 856–869 (1986)

    MathSciNet  MATH  Google Scholar 

  111. L. Schwartz, Théorie des Distributions, Broché (1997)

  112. M.W. Scroggs, T. Betcke, E. Burman, W. Smigaj, E. van’t Wout, Software frameworks for integral equations in electromagnetic scattering based on Calderon identities. Comput. Math. Appl. 74(11), 2897–2914 (2017)

    MathSciNet  MATH  Google Scholar 

  113. O. Steinbach, W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9(1–2), 191–216 (1998)

    MathSciNet  MATH  Google Scholar 

  114. G. Sylvand, La Méthode Multipôle Rapide En Electromagnétisme: Performances (Parallélisation, Applications, Thèse de Doctorat, ENPC, 2002)

  115. M.E. Taylor, Pseudodifferential Operators, Princeton Mathematical Series, vol. 34 (Princeton University Press, Princeton, 1981), p. xi+452

    Google Scholar 

  116. L.L. Thompson, A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Am. 119(3), 2272–2293 (2006)

    Google Scholar 

  117. L.N. Trefethen, Pseudospectra of Matrices, in Numerical Analysis, ed. by D.F. Griffiths, G.A. (Watson Longman Scientific and Technical, 1991)

  118. C. Turc, Y. Boubendir, M. Riahi, Well-conditioned boundary integral equation formulations and Nystrom discretizations for the solution of Helmholtz problems with impedance boundary conditions in two-dimensional lipschitz domains. J. Integral Equ. Appl. 29(3), 441–472 (2017)

    MathSciNet  MATH  Google Scholar 

  119. E. Turkel, Boundary Conditions and Iterative Schemes for the Helmholtz Equation in Unbounded Regions, Book Chapter in Computational Methods for Acoustics Problems, ed. by F. Magoulès, (Saxe-Coburg Publications, 2008), pp. 127–159 (ISBN: 978-1-874672-30-2)

  120. E. Wout, P. Gelat, T. Betcke, S. Arridge, A fast boundary element method for the scattering analysis of high-intensity focused ultrasound. J. Acoust. Soc. Am. 138(5), 2726–2737 (2015)

    Google Scholar 

  121. Y. Wang, J. Lee, J. Zhang, A short survey on preconditioning techniques for large-scale dense complex linear systems in electromagnetics. Int. J. Comput. Math. 84(8), 1211–1223 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Antoine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoine, X., Darbas, M. An Introduction to Operator Preconditioning for the Fast Iterative Integral Equation Solution of Time-Harmonic Scattering Problems. Multiscale Sci. Eng. 3, 1–35 (2021). https://doi.org/10.1007/s42493-021-00057-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-021-00057-6

Keywords

Navigation