Skip to main content
Log in

From driving trajectories to driving paths: a survey on map-matching Algorithms

  • Survey Paper
  • Published:
CCF Transactions on Pervasive Computing and Interaction Aims and scope Submit manuscript

Abstract

With the widespread deployment of built-in Global Positioning System (GPS) devices, numerous volumes of driving trajectories can be recorded conveniently. Affected by GPS equipment precision and driving environments, raw GPS trajectories will deviate from the paths that vehicles really drove on. Such inaccurate data is not beneficial to the upstream applications. Therefore, map matching is applied to identify the true driving paths in the road network from the GPS trajectories data. A lot of studies in the filed of map matching have been proposed, but there still exist three problems: (1) there lacks a comprehensive review on recent map matching algorithms with new techniques; (2) the existing map-matching algorithms still fail to meet the requirements of both high precision and high efficiency simultaneously; (3) there is a lack of comparison between various types of matching algorithms on a unified experimental environment. In this paper, we review the existing matching algorithms and propose a new categorisation based on their methodologies. The proposed categorisation can better reveal their properties and facilitate the future utilization. In addition, we conduct an experimental comparison among four representative algorithms to give a deep insight to the properties of different categories. Experimental results reveal the importance of some solutions to improve matching accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdallah, F., Nassreddine, G., Denoeux, T.: A multiple-hypothesis map-matching method suitable for weighted and box-shaped state estimation for localization. IEEE Trans. Intell. Transp. Syst. 12(4), 1495–1510 (2011)

    Article  Google Scholar 

  • Aly, H., Youssef, M.: semmatch: Road semantics-based accurate map matching for challenging positioning data. ACM (2015)

  • Assam, R., Seidl, T.: Effective map matching using curve tangents and hidden markov model. In: 2014 10th International Conference on Mobile Ad-hoc and Sensor Networks (2015)

  • Bian, W., Cui, G., Wang, X.: A trajectory collaboration based map matching approach for low-sampling-rate gps trajectories. Sensors 20(7), 2057 (2020)

    Article  Google Scholar 

  • Cao, W., Liu, H.: Improved map matching method based on Hausdorff distance. Comput. Eng. Appl. (2013)

  • Castro, P.S., Zhang, D., Chen, C., Li, S., Pan, G.: From taxi GPS traces to social and community dynamics: a survey. ACM Comput. Surv. (CSUR) 46(2), 1–34 (2013)

    Article  Google Scholar 

  • Cew, A., Db, B., Alk, A.: Some map matching algorithms for personal navigation assistants—sciencedirect. Transport. Res. Part C Emerg. Technol. 8(16), 91–108 (2000)

    Google Scholar 

  • Chandio, A.A., Tziritas, N., Fan, Z., Xu, C.Z.: An approach for map-matching strategy of gps-trajectories based on the locality of road networks. Springer International Publishing, Cham (2015)

    Book  Google Scholar 

  • Chao, C., Yan, D., Xie, X., Shu, Z.: A three-stage online map-matching algorithm by fully using vehicle heading direction. J. Ambient Intell. Humaniz. Comput. 9(5), 1–11 (2018)

    Google Scholar 

  • Chao, P., Xu, Y., Hua, W., Zhou, X.: A survey on map-matching algorithms. In: Australasian Database Conference, pp. 121–133. Springer (2020)

  • Chao, P., Hua, W., Zhou, X.: Trajectories know where map is wrong: an iterative framework for map-trajectory co-optimisation. World Wide Web 23(1), 47–73 (2020)

    Article  Google Scholar 

  • Chen, C., Zhang, D., Castro, P., S., Li, N.: iboat: Isolation-based online anomalous trajectory detection. IEEE Trans. Intell. Transport. Syst. (2013)

  • Chen, C., Zhang, X., Dong, Y., Dong, H., Rao, F.: Map-matching based on driver behavior model and massive trajectories. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 2817–2822 (2014). https://doi.org/10.1109/ITSC.2014.6958141

  • Cintia, P., Nanni, M.: An effective time-aware map matching process for low sampling gps data. arXiv:1603.07376 (2016)

  • Cooper, S., Durrant-Whyte, H.: A kalman filter model for gps navigation of land vehicles. In: Intelligent Robots and Systems ’94. ’Advanced Robotic Systems and the Real World’, IROS ’94. Proceedings of the IEEE/RSJ/GI International Conference On (1994)

  • Dogramadzi, M., Khan, A.: Accelerated map matching for GPS trajectories. IEEE Trans. Intell. Transport. Syst. (2021). https://doi.org/10.1109/TITS.2020.3046375

    Article  Google Scholar 

  • Fang, S., Zimmermann, R.: Enacq: energy-efficient gps trajectory data acquisition based on improved map matching. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 221–230 (2011)

  • Feng, J., Li, Y., Zhao, K., Xu, Z., Xia, T., Zhang, J., Jin, D.: Deepmm: Deep learning based map matching with data augmentation. IEEE Trans. Mob. Comput. (2020). https://doi.org/10.1109/TMC.2020.3043500

    Article  Google Scholar 

  • Goh, C.Y., Dauwels, J., Mitrovic, N., Asif, M.T., Oran, A., Jaillet, P.: Online map-matching based on hidden Markov model for real-time traffic sensing applications. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems, pp. 776–781 (2012). IEEE

  • Gong, Y.-J., Chen, E., Zhang, X., Ni, L.M., Zhang, J.: Antmapper: An ant colony-based map matching approach for trajectory-based applications. IEEE Trans. Intell. Transp. Syst. 19(2), 390–401 (2017)

    Article  Google Scholar 

  • Greenfeld, J.S.: Matching GPS observations to locations on a digital map. In: Transportation Research Board 81st Annual Meeting, vol. 22 (2002)

  • Hao, X.U., Liu, H., Tan, C.W., Bao, Y.: Development and application of an enhanced Kalman filter and global positioning system error-correction approach for improved map-matching. J. Intell. Transport. Syst. 14(1), 27–36 (2010)

    Article  MATH  Google Scholar 

  • Hashemi, M., Karimi, H.A.: A critical review of real-time map-matching algorithms: current issues and future directions. Comput. Environ. Urban Syst. 48(9), 153–165 (2014)

    Article  Google Scholar 

  • Hashemi, M., Karimi, H.A.: A machine learning approach to improve the accuracy of gps-based map-matching algorithms (invited paper). In: IEEE International Conference on Information Reuse & Integration, pp. 77–86 (2016)

  • Haunert, J.-H., Budig, B.: An algorithm for map matching given incomplete road data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 510–513 (2012)

  • Hide, C., Moore, T., Smith, M.: Adaptive Kalman filtering for low-cost ins/gps. J. Navig. 56(1), 143–152 (2003)

    Article  Google Scholar 

  • Hsueh, Y.-L., Chen, H.-C.: Map matching for low-sampling-rate gps trajectories by exploring real-time moving directions. Inf. Sci. 433–434, 55–69 (2018). https://doi.org/10.1016/j.ins.2017.12.031

    Article  MathSciNet  Google Scholar 

  • Hu, G., Shao, J., Liu, F., Wang, Y., Shen, H.T.: If-matching: Towards accurate map-matching with information fusion. IEEE Trans. Knowl. Data Eng. 29(1), 114–127 (2017). https://doi.org/10.1109/TKDE.2016.2617326

    Article  Google Scholar 

  • Huang, Y., Rao, W., Zhang, Z., Zhao, P., Yuan, M., Zeng, J.: Frequent pattern-based map-matching on low sampling rate trajectories. In: 2018 19th IEEE International Conference on Mobile Data Management (MDM), pp. 266–273 (2018). https://doi.org/10.1109/MDM.2018.00046

  • Jagadeesh, G.R., Srikanthan, T.: Online map-matching of noisy and sparse location data with hidden Markov and route choice models. IEEE Trans. Intell. Transp. Syst. 18(9), 2423–2434 (2017)

    Article  Google Scholar 

  • Jin, Z., Kim, J., Yeo, H., Choi, S.: Transformer-based map matching model with limited ground-truth data using transfer-learning approach. arXiv:2108.00439 (2021)

  • Kai, Z., Yu, Z., Xing, X., Zhou, X.: Reducing uncertainty of low-sampling-rate trajectories. IEEE (2012)

  • Kim, K., Seol, S., Kong, S.H.: High-speed train navigation system based on multi-sensor data fusion and map matching algorithm. Int. J. Control Autom. Syst. 13(3), 503–512 (2015)

    Article  Google Scholar 

  • Kong, X., Yang, J.: A scenario-based map-matching algorithm for complex urban road network. J. Intell. Transp. Syst. 23(6), 617–631 (2019)

    Article  Google Scholar 

  • Krüger, R., Simeonov, G., Beck, F., Ertl, T.: Visual interactive map matching. IEEE Trans. Visual Comput. Graph. 24(6), 1881–1892 (2018). https://doi.org/10.1109/TVCG.2018.2816219

    Article  Google Scholar 

  • Kubicka, M., Cela, A., Mounier, H., Niculescu, S.-I.: Comparative study and application-oriented classification of vehicular map-matching methods. IEEE Intell. Transp. Syst. Mag. 10(2), 150–166 (2018)

    Article  Google Scholar 

  • Liang, L., Quddus, M., Lin, Z.: High accuracy tightly-coupled integrity monitoring algorithm for map-matching. Tramsport. Res. Part C Emerg. Technol. 36(9), 13–26 (2013)

    Google Scholar 

  • Lin, M.C.-H., Huang, F.-M., Liu, P.-C., Huang, Y.-H., Chung, Y.-s.: Dijkstra-based selection for parallel multi-lanes map-matching and an actual path tagging system. In: Asian Conference on Intelligent Information and Database Systems, pp. 499–508. Springer (2016)

  • Liu, X., Liu, K., Li, M., Lu, F.: A st-crf map-matching method for low-frequency floating car data. IEEE Trans. Intell. Transp. Syst. 18(5), 1241–1254 (2017). https://doi.org/10.1109/TITS.2016.2604484

    Article  Google Scholar 

  • Mohamed, R., Aly, H., Youssef, M.: Accurate real-time map matching for challenging environments. IEEE Trans. Intell. Transp. Syst. 18(4), 847–857 (2017)

    Article  Google Scholar 

  • Murphy, J., Pao, Y., Yuen, A.: Map matching when the map is wrong: efficient vehicle tracking on-and off-road for map learning. arXiv:1809.09755 (2018)

  • Nikolić, M., Jović, J.: Implementation of generic algorithm in map-matching model. Expert Syst. Appl. (2017)

  • Osogami, T., Raymond, R.: Map matching with inverse reinforcement learning. In: Twenty-Third International Joint Conference on Artificial Intelligence (2013)

  • Ozdemir, E., Topcu, A.E., Ozdemir, M.K.: A hybrid hmm model for travel path inference with sparse gps samples. Transportation 45(1), 233–246 (2018)

    Article  Google Scholar 

  • Peker, A.U., Tosun, O., Acarman, T.: Particle filter vehicle localization and map-matching using map topology. In: 2011 IEEE Intelligent Vehicles Symposium (IV) (2011)

  • Quddus, M., Washington, S.: Shortest path and vehicle trajectory aided map-matching for low frequency GPS data. Transport. Res. Part C: Emerg. Technol. 55, 328–339 (2015a)

    Article  Google Scholar 

  • Quddus, M., Washington, S.: Shortest path and vehicle trajectory aided map-matching for low frequency gps data. Transp. Res. Part C 55, 328–339 (2015b)

    Article  Google Scholar 

  • Quddus, M.A., Noland, R.B., Ochieng, W.Y.: A high accuracy fuzzy logic based map matching algorithm for road transport. J. Intell. Transp. Syst. 10(3), 103–115 (2006a)

    Article  MATH  Google Scholar 

  • Quddus, M.A., Noland, R.B., Ochieng, W.Y.: A high accuracy fuzzy logic based map matching algorithm for road transport. J. Intell. Transport. Syst. 10(3), 103–115 (2006a)

    Article  MATH  Google Scholar 

  • Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transp. Res. Part C Emerg. Technol. 15(5), 312–328 (2007)

    Article  Google Scholar 

  • Schulze, G., Horn, C., Kern, R.: Map-matching cell phone trajectories of low spatial and temporal accuracy. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 2707–2714 IEEE (2015)

  • Sharath, M., Velaga, N.R., Quddus, M.A.: A dynamic two-dimensional (d2d) weight-based map-matching algorithm. Transp. Res. Part C: Emerg. Technol. 98, 409–432 (2019)

    Article  Google Scholar 

  • Shen, Z., Du, W., Zhao, X., Zou, J.: Dmm: fast map matching for cellular data. In: MobiCom ’20: The 26th Annual International Conference on Mobile Computing and Networking (2020)

  • Syed, S., Cannon, M.E.: Fuzzy logic based-map matching algorithm for vehicle navigation system in urban canyons. In: Proceedings of the 2004 National Technical Meeting of the Institute of Navigation, pp. 982–993 (2004)

  • Szwed, P., Pekala, K.: An incremental map-matching algorithm based on hidden Markov model. Springer International Publishing, Cham (2014)

    Book  Google Scholar 

  • Taguchi, S., Koide, S., Yoshimura, T.: Online map matching with route prediction. IEEE Trans. Intell. Transport. Syst. 20(1), 338–347 (2019)

    Article  Google Scholar 

  • Wang, G., Zimmermann, R.: Eddy: An error-bounded delay-bounded real-time map matching algorithm using hmm and online viterbi decoder. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 33–42 (2014)

  • Wang, H., Jin, L., Hou, Z., Fang, R., Mei, W., Jian, H.: Research on parallelized real-time map matching algorithm for massive GPS data. Clust. Comput. 20(2), 1123–1134 (2017)

    Article  Google Scholar 

  • Wenbin, S., Ting, X.: A low-sampling-rate trajectory matching algorithm in combination of history trajectory and reinforcement learning (in chinese). J. Surv. Mapp. 45(11), 1328 (2016)

    Google Scholar 

  • Wenchao, G., Guoliang, L.: Tana: survey of map matching algorithms. J. Softw. 29(2) (2018)

  • Wu, H., Mao, J., Sun, W., Zheng, B., Zhang, H., Chen, Z., Wang, W.: Probabilistic robust route recovery with spatio-temporal dynamics. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1915–1924 (2016)

  • Wylie, T., Zhu, B.: Following a curve with the discrete fréchet distance. Theor. Comput. Sci. 556, 34–44 (2014)

    Article  MATH  Google Scholar 

  • Xu, M., Du, Y., Wu, J., Zhou, Y.: Map matching based on conditional random fields and route preference mining for uncertain trajectories. Math. Probl. Eng. 2015, 1–13 (2015)

    Google Scholar 

  • Yang, H., Cheng, S., Jiang, H., An, S.: An enhanced weight-based topological map matching algorithm for intricate urban road network. Procedia. Soc. Behav. Sci. 96, 1670–1678 (2013)

    Article  Google Scholar 

  • Yifang, Y., Ratn, S.R., Guanfeng, W., Roger, Z.: Feature-based map matching for low-sampling-rate gps trajectories. Acm Trans. Spat. Algorithms Syst. 4(2), 1–24 (2018)

    Google Scholar 

  • Yin, Y., Shah, R.R., Wang, G., Zimmermann, R.: Feature-based map matching for low-sampling-rate gps trajectories. ACM Trans. Spat. Algorithms Syst. (TSAS) 4(2), 1–24 (2018)

    Article  Google Scholar 

  • Zhang, E., Masoud, N.: Increasing GPS localization accuracy with reinforcement learning. IEEE Trans. Intell. Transp. Syst. 99, 1–12 (2020)

    Google Scholar 

  • Zhang, P., Gu, J., Milios, E.E., Huynh, P.: Navigation with imu/gps/digital compass with unscented kalman filter. In: Mechatronics & Automation, IEEE International Conference (2005)

  • Zhang, H., Li, T., Yin, L., Liu, D., Pan, F.: A novel kgp algorithm for improving ins/gps integrated navigation positioning accuracy. Sensors 19(7), 1623 (2019)

    Article  Google Scholar 

  • Zheng, S., Zhou, G., Zhang, B., Shi, L.: A map matching algorithm based on discrete fréchet distance. J. Hefei Univ. Technol. (Nat. Sci.) (2017)

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 61872050 and 62172066), and sponsored by DiDi GAIA Research Collaboration Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Chen, C., Chen, C. et al. From driving trajectories to driving paths: a survey on map-matching Algorithms. CCF Trans. Pervasive Comp. Interact. 4, 252–267 (2022). https://doi.org/10.1007/s42486-022-00101-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42486-022-00101-w

Keywords

Navigation