Skip to main content
Log in

Leaching of Silver from Mechanically Activated Naumannite

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

In this paper, the structure, morphology, chemical composition and leaching of naumannite (Ag2Se) were studied. Mechanical activation of Ag2Se in a planetary ball mill resulted in increasing its specific surface area. The influence of milling time on the particle size was studied by particle size distribution analysis and scanning electron microscopy. The leaching kinetics of non-activated and mechanically activated samples in 3.5–7.9 mol/L HNO3 solutions were examined. Subsequently, the effect of leaching temperature in the range of 25–50°C on the recovery of silver from mechanically activated naumannite was documented. The maximum yield of silver 94% was achieved after 120 min of leaching in 7.9 mol/L HNO3 at 50°C for the sample mechanically activated for 30 min. Based on calculated activation energy values from the Arrhenius equation, a mixed leaching mechanism consisting of diffusion and surface chemical reaction as the rate-controlling steps of the solid-liquid reaction was assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Billetter H, Ruschewitz U (2008) Structural phase transitions in Ag2Se (naumannite). Z Anorg Allg Chem 634(2):241–246. https://doi.org/10.1002/zaac.200700452

    Article  Google Scholar 

  2. Wiegers G (1971) Crystal-structure of low-temperature form of silver selenide. Am Mineral 56:1882–1888

    Google Scholar 

  3. Rahlfs P (1936) The cubic high-temperature modificators of sulfides, selenides and tellurides of silver and of uni-valent copper. Zeitschrift Fur Physikalische Chemie-Abteilung B-Chemie Der Elementarprozesse Aufbau Der Materie 31:157–194

    Google Scholar 

  4. www.mindat.org. Available online: (accessed on 20.04.2022)

  5. Simon G, Essene E (1996) Phase relations among selenides, sulfides, tellurides, and oxides. 1. Thermodynamic properties and calculated equilibria. Econ Geol 91:1183–1208. https://doi.org/10.2113/gsecongeo.91.7.1183

    Article  Google Scholar 

  6. ASM Handbook: Properties and selection: nonferrous alloys and special-purpose materials, 10 ed.; ASM International: 1990; Volume 2, p. 1328.

  7. Lide DR (ed) (2004) CRC handbook of chemistry and physics: a ready-reference of chemical and physical data, 85th edn. CRC Press LLC, Boca Raton, p 2712

    Google Scholar 

  8. So H, Lee J, Cho Y, Ahn J, Ryu H (2018) Leaching of silver (Ag) from electronic scrap by thiourea. Korean J of Metals and Materials 56:511–517. https://doi.org/10.3365/KJMM.2018.56.7.511

    Article  Google Scholar 

  9. Chen T, Dutrizac J (1990) Mineralogical characterization of anode slimes. 6. Pressure leached slimes from the CCR Division of Noranda Minerals Inc. Canadian Metall Quar 29:293–305

    Article  Google Scholar 

  10. Gendolla T, Charewicz W (1974) Selenium and tellurium in anodic slime processing. Rudy Metale 19:524–527

    Google Scholar 

  11. Štofko M, Štofková M (1991) Recovery of selenium from anode slime by hydrometallurgical method. Metall J:302–304 in Slovak

  12. Havlík T (1997) Selenium recovery possibilities. Acta Metall Slovaca 4:276–283

    Google Scholar 

  13. Dutrizac J (1994) The leaching of silver sulfide in ferric ion media. Hydrometallurgy 35:275–292. https://doi.org/10.1016/0304-386X(94)90056-6

    Article  Google Scholar 

  14. Holloway P, Merriam K, Etsell T (2004) Nitric acid leaching of silver sulphide precipitates. Hydrometallurgy 74:213–220. https://doi.org/10.1016/j.hydromet.2004.05.003

    Article  Google Scholar 

  15. Xie F, Dreisinger D (2007) Leaching of silver sulfide with ferricyanide-cyanide solution. Hydrometallurgy 88:98–108. https://doi.org/10.1016/j.hydromet.2007.03.008

    Article  Google Scholar 

  16. Gabby K, Eisele T, Bucknam C, Hall B, Milosavljevic E (2014) Simultaneous mercury capture and silver leaching using Ag2S-bearing ores and residues. Miner Metall Process 31:181–192. https://doi.org/10.1007/BF03402468

    Article  Google Scholar 

  17. Xu B, Yang Y, Li Q, Jiang T, Li G (2016) Stage leaching of a complex polymetallic sulfide concentrate: focus on the extraction of Ag and Au. Hydrometallurgy 159:87–94. https://doi.org/10.1016/j.hydromet.2015.10.008

    Article  Google Scholar 

  18. Bernaola-Flores R, Silva-Quinones D, Balbuena P, Rodriguez-Reyes J, Tarazona-Vasquez F (2019) Atomic scale study of silver sulfide leaching with cyanide and thiourea. Physicochem Probl Miner 55:969–980. https://doi.org/10.5277/ppmp19019

    Article  Google Scholar 

  19. Chen J, Xie F, Wang W, Fu Y, Wang J (2022) Leaching of gold and silver from a complex sulfide concentrate in copper-tartrate-thiosulfate solutions. Metals 12

  20. Luo R, Rice N, Taylor N, Gee R (1997) A study of the oxidative dissolution of synthetic copper-silver selenide minerals using the intermittent galvanostatic polarisation (IGP) technique. Hydrometallurgy 45:221–238. https://doi.org/10.1016/S0304-386X(96)00088-6

    Article  Google Scholar 

  21. Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin-Heidelberg

    Google Scholar 

  22. Syrtlanova LS, Minejev GG, Smagunov VN, Perepelica LS (1979) Intensification of arsenopyrite-pyrite concentrate alkaline leaching by dry milling (in Russian). Izvestija SO AN SSSR 3:50–55

    Google Scholar 

  23. Jusupov TS, Heegn HP (1997) Influence of mechanical activation of minerals on the physico-chemical properties of minerals surfaces and flotability. Proceedings of the XXth International Mineral Processing Congress, Aachen, Germany, pp 141–150

    Google Scholar 

  24. Bouaziz A, Hamzaoui R, Guessasma S, Lakhal R, Achoura D, Leklou N (2017) Efficiency of high energy over conventional milling of granulated blast furnace slag powder to improve mechanical performance of slag cement paste. Powder Technol 308:37–46. https://doi.org/10.1016/j.powtec.2016.12.014

    Article  Google Scholar 

  25. Baláž P, Kammel R, Achimovičová M (1994) Selective hydrometallurgical extraction of antimony, mercury and silver from mechanochemically treated tetrahedrite concentrate. Metall 48:217–220

    Google Scholar 

  26. Baláž P, Sekula F, Jakabský S, Kammel R (1995) Application of attrition grinding in alkaline leaching of tetrahedrite. Miner Eng 8:1299–1308. https://doi.org/10.1016/0892-6875(95)00097-A

    Article  Google Scholar 

  27. Baláž P, Boldižárová E, Achimovičová M, Kammel R (2000) Leaching and dissolution of a pentlandite concentrate pretreated by mechanical activation. Hydrometallurgy 57:85–96. https://doi.org/10.1016/S0304-386X(00)00102-X

    Article  Google Scholar 

  28. Baláž P, Achimovičová M, Bastl Z, Ohtani T, Sanchez M (2000) Influence of mechanical activation on the alkaline leaching of enargite concentrate. Hydrometallurgy 54:205–216. https://doi.org/10.1016/S0304-386X(99)00071-7

    Article  Google Scholar 

  29. Baláž P (2000) In: Ritcey GM (ed) Extractive metallurgy of activated minerals, 1st edn. Elsevier, Amsterdam, p 278

    Google Scholar 

  30. Baláž P, Aláčová A, Achimovičová M, Ficeriová J, Godočíková E (2005) Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy 77:9–17. https://doi.org/10.1016/j.hydromet.2004.09.009

    Article  Google Scholar 

  31. Baláž P, Achimovičová M (2006) Selective leaching of antimony and arsenic from mechanically activated tetrahedrite, jamesonite and enargite. Int J Miner Process 81:44–50. https://doi.org/10.1016/j.minpro.2006.06.004

    Article  Google Scholar 

  32. Achimovičová M, Baláž P (2008) Kinetics of the leaching of mechanically activated berthierite, boulangerite and franckeite. Phys Chem Miner 35:95–101. https://doi.org/10.1007/s00269-007-0201-7

    Article  Google Scholar 

  33. Marquez-Zavalia M, Galliski M, Skacha P, Macek I, Sejkora J, Dolnicek Z (2021) Mineralogy of the Rincon Blanco selenide occurrence, La Rioja, Argentina. J Geosci 66:1–14. https://doi.org/10.3190/jgeosci.316

    Article  Google Scholar 

  34. Dutrizac J (1982) Ferric ion leaching of chalcopyrites from different localities. Metall Mater Trans B 13:303–309. https://doi.org/10.1007/BF02667745

    Article  Google Scholar 

  35. Baláž P, Briančin J, Šepelák V, Havlík T, Škrobian M (1992) Nonoxidative leaching of mechanically activated stibnite. Hydrometallurgy 31:201–212. https://doi.org/10.1016/0304-386X(92)90118-J

    Article  Google Scholar 

  36. Baláž P (1996) Influence of solid state properties on ferric chloride leaching of mechanically activated galena. Hydrometallurgy 40:359–368. https://doi.org/10.1016/0304-386X(95)00011-5

    Article  Google Scholar 

  37. Vehmaanpera P, Sihvonen T, Salmimies R, Hakkinen A (2022) Dissolution of magnetite and hematite in mixtures of oxalic and nitric acid: mechanisms and kinetics. Minerals 12. https://doi.org/10.3390/min12050560

  38. Habashi F (1970) In Principles of extractive metallurgy, vol 2. Gordon and Breach, New York

    Google Scholar 

  39. Evans J (1979) Mass-transfer with chemical-reaction. Miner Eng 11:207–223

    Google Scholar 

Download references

Acknowledgements

We would like to thank R. Bureš for the PSD measurements.

Funding

This work was realized within the frame of the Slovak Research and Development Agency under the contract No. APVV-18-0357, and by the Slovak Grant Agency VEGA (projects 02/0036/23, 02/0136/23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Achimovičová.

Ethics declarations

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gáborová, K., Achimovičová, M., Škácha, P. et al. Leaching of Silver from Mechanically Activated Naumannite. Mining, Metallurgy & Exploration 40, 505–515 (2023). https://doi.org/10.1007/s42461-023-00748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-023-00748-8

Keywords

Navigation