Skip to main content
Log in

Applications of Wireless Indoor Positioning Systems and Technologies in Underground Mining: a Review

  • Review
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

In the last decade, new developments took place in the area of indoor positioning (or localization). Since the Global Navigation Satellite System (GNSS) cannot be used in underground mines, other technologies are needed for localization. Positioning and communication options today primarily include Wi-Fi, Bluetooth Low Energy (BLE), Ultra-Wideband (UWB), Radio Frequency Identification Device (RFID), etc. Smartphones and tablets currently have an array of sensors and radios, which can provide valuable information to allow indoor localization via various methods. Where mineworkers could keep smartphones with them, they can be highly effective at enabling localization and navigation. Recent applications of these technologies in underground mines have been thoroughly reviewed and examined for the likelihood of their utility for accurate localization where no other means exist. Some critical challenges and gaps that need to be addressed in future research have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amundson I, Koutsoukos XD (2009) A survey on localization for mobile wireless sensor networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 5801 LNCS, pp 235–254. https://doi.org/10.1007/978-3-642-04385-7_16

  2. Al Nuaimi K, Kamel H (2011) A survey of indoor positioning systems and algorithms. In: 2011 International Conference on Innovations in Information Technology, IIT 2011, pp 185–190. https://doi.org/10.1109/INNOVATIONS.2011.5893813

  3. Yang Z, Zhou Z, Liu Y (2013) From RSSI to CSI: indoor localization via channel response. ACM Comput Surv 46(2). https://doi.org/10.1145/2543581.2543592

  4. Castro P, Chiu P, Kremenek T, Muntz RR (2001) A probabilistic room location service for wireless networked environments. In: UbiComp ’01 Proceedings of the 3rd International Conference on Ubiquitous Computing, pp 18–34

  5. Haeberlen A, Rudys A, Flannery E, Wallach DS, Ladd AM, Kavraki LE (2004) Practical robust localization over large-scale 802.11 wireless networks. In: Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM, pp 70–84. https://doi.org/10.1145/1023720.1023728

  6. Krishnan P, Krishnakumar AS, Ju WH, Mallows C, Ganu S (2004) A system for LEASE: location estimation assisted by stationary emitters for indoor RF wireless networks. Proceedings - IEEE INFOCOM 2:1001–1011. https://doi.org/10.1109/infcom.2004.1356987

    Article  Google Scholar 

  7. Ladd AM, Bekris KE, Rudys A, Kavraki LE, Wallach DS (2005) Robotics-based location sensing using wireless ethernet. Wireless Netw 11(1–2):189–204. https://doi.org/10.1007/s11276-004-4755-8

    Article  Google Scholar 

  8. Kumar P, Reddy L, Varma S (2009) Distance measurement and error estimation scheme for RSSI based localization in wireless sensor networks. In: 5th International Conference on Wireless Communication and Sensor Networks, WCSN-2009, pp 80–83. https://doi.org/10.1109/WCSN.2009.5434802

  9. Yu J (2015) A layered two-step hidden Markov model positioning method for underground mine environment based on Wi-Fi signals. Mid Sweden University

  10. Xiao J, Wu K, Yi Y, Wang L, Ni LM (2013) Pilot: passive device-free indoor localization using channel state information. In: Proceedings - International Conference on Distributed Computing Systems, pp 236–245. https://doi.org/10.1109/ICDCS.2013.49

  11. Brás L, Carvalho NB, Pinho P, Kulas L, Nyka K (2012) A review of antennas for indoor positioning systems. Int J Antennas Propag 201:1–14. https://doi.org/10.1155/2012/953269

    Article  Google Scholar 

  12. Liu H, Darabi H, Banerjee P, Liu J (2007) Survey of wireless indoor positioning techniques and systems. IEEE Trans Syst Man Cybern Part C Appl Rev 37(6):1067–1080. https://doi.org/10.1109/TSMCC.2007.905750

    Article  Google Scholar 

  13. Zafari F, Gkelias A, Leung KK (2019) A survey of indoor localization systems and technologies. IEEE Commun Surv Tutorials 21(3):2568–2599. https://doi.org/10.1109/COMST.2019.2911558

    Article  Google Scholar 

  14. Dargie W, Poellabauer C (2010) Fundamentals of wireless sensor networks: theory and practice. Wiley

    Book  Google Scholar 

  15. Xiao J, Liu Z, Yang Y, Liu D, Xu H (2011) Comparison and analysis of indoor wireless positioning techniques. In: 2011 International Conference on Computer Science and Service System, CSSS 2011 - Proceedings, pp 293–296. https://doi.org/10.1109/CSSS.2011.5972088

  16. Gu Y, Lo A, Niemegeers I (2009) A survey of indoor positioning systems for wireless personal networks. IEEE Commun Surv Tutorials 11(1):13–32. https://doi.org/10.1109/SURV.2009.090103

    Article  Google Scholar 

  17. Mautz R (2012). Indoor positioning technologies. https://doi.org/10.3929/ethz-a-007313554

    Article  Google Scholar 

  18. Zhang D, Xia F, Yang Z, Yao L, Zhao W (2010) Localization technologies for indoor human tracking. https://doi.org/10.1109/FUTURETECH.2010.5482731

  19. Subhan F, Hasbullah H, Rozyyev A, Bakhsh ST (2011) Indoor positioning in Bluetooth networks using fingerprinting and lateration approach. https://doi.org/10.1109/ICISA.2011.5772436

  20. Harle R (2013) A survey of indoor inertial positioning systems for pedestrians. IEEE Commun Surv Tutorials 15(3):1281–1293. https://doi.org/10.1109/SURV.2012.121912.00075

    Article  Google Scholar 

  21. Wang H, Jia F (2007) A hybrid modeling for WLAN positioning system. In: 2007 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2007, pp 2152–2155. https://doi.org/10.1109/WICOM.2007.537

  22. Yim J, Park C, Joo J, Jeong S (2008) Extended Kalman Filter for wireless LAN based indoor positioning. Decis Support Syst 45(4):960–971. https://doi.org/10.1016/j.dss.2008.03.004

    Article  Google Scholar 

  23. Centenaro M, Vangelista L, Zanella A, Zorzi M (2016) Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel Commun 23(5):60–67

    Article  Google Scholar 

  24. Adame T, Bel A, Bellalta B, Barcelo J, Oliver M (2014) IEEE 802.11 ah: the WiFi approach for M2M communications. IEEE Wirel Commun 21(6):144–152

    Article  Google Scholar 

  25. Vasisht D, Kumar S, Katabi D (2016) Decimeter-level localization with a single WiFi access point. In: 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16), pp 165–178. https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/xiong

  26. Kumar S, Gil S, Katabi D, Rus D (2014) Accurate indoor localization with zero start-up cost. In: Proceedings of the 20th annual international conference on Mobile computing and networking, pp 483–494

  27. Zafari F, Papapanagiotou I, Devetsikiotis M, Hacker T (2017) An ibeacon based proximity and indoor localization system, arXiv Prepr. arXiv1703.07876

  28. Kotaru M, Joshi K, Bharadia D, Katti S (2015) Spotfi: Decimeter level localization using wifi. In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, pp 269–282. https://doi.org/10.1145/2829988.2787487

  29. Xiong J, Jamieson K (2013) Arraytrack: A fine-grained indoor location system. In: Presented as part of the 10th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 13), pp 71–84

  30. Ralston JC, Hargrave CO, Hainsworth DW (2005) Localisation of mobile underground mining equipment using wireless ethernet. Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., vol 1, pp 225–230. https://doi.org/10.1109/IAS.2005.1518314

  31. Chehri A, Fortier P, Tardif PM (2006) Application of Ad-hoc sensor networks for localization in underground mines. IEEE Wirel Microw Technol Conf WAMICON 2006:1–4. https://doi.org/10.1109/WAMICON.2006.351901

    Article  Google Scholar 

  32. Zhang Y, Li A, Zhang Y (2009) Research and design of location tracking system used in underground mine based on WiFi technology, IFCSTA 2009 Proc. - 2009 Int. Forum Comput. Sci. Appl., vol 3, pp 417–419. https://doi.org/10.1109/IFCSTA.2009.341

  33. Wang K, Wang Q, Jiang D, Xu Q (2011) A routing and positioning algorithm based on a K-barrier for use in an underground wireless sensor network. Min Sci Technol 21(6):773–779. https://doi.org/10.1016/j.mstc.2011.04.003

    Article  Google Scholar 

  34. Kumar S, Lai T, Arora A (2005) Barrier coverage with wireless sensors. In: Proceedings of the 11th Annual International Conference on Mobile Computing and Networking (MobiCom’05), pp 284–298

  35. Hedley M, Gipps I (2013) Accurate wireless tracking for underground mining, 2013 IEEE Int. Conf. Commun. Work. ICC 2013, pp 42–46.https://doi.org/10.1109/ICCW.2013.6649198

  36. Cypriani M, Delisle G, Hakem N (2013) Wi-Fi-based positioning in underground mine tunnels. In: 2013 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2013, no. October, pp 28–31. https://doi.org/10.1109/IPIN.2013.6817894

  37. Cypriani M, Delisle G, Hakem N (2015) Wi-Fi-based positioning in a complex underground environment. J Networks 10(3):141–152. https://doi.org/10.4304/jnw.10.3.141-151

    Article  Google Scholar 

  38. Lin P, Li Q, Fan Q, Gao X, Hu S (2014) A real-time location-based services system using WiFi fingerprinting algorithm for safety risk assessment of workers in tunnels. Math Probl Eng 2014. https://doi.org/10.1155/2014/371456

  39. Srikanth B, Kumar H, Rao KUM (2018) A robust approach for WSN localization for underground coal mine monitoring using improved RSSI technique. Math Model Eng Probl 5(3):225–231. https://doi.org/10.18280/mmep.050314

    Article  Google Scholar 

  40. Chilès J-P, Delfiner P (2012) Geostatistics: Modeling Spatial Uncertainty. Wiley, New Jersey

    Book  Google Scholar 

  41. Tahir N, Karim M, Sharif K, Li F, Ahmed N (2018) Quadrant-based weighted centroid algorithm for localization in underground mines. In: Chellappan S, Cheng W, Li W (eds) Springer International Publishing AG, pp 462–472

  42. Guo Y, Song X, Yang L, Lv W (2019) A coal mine underground localization algorithm based on the feature vector. J Eng Technol Sci 51(2):184. https://doi.org/10.5614/j.eng.technol.sci.2019.51.2.3

    Article  Google Scholar 

  43. Mohapatra AG et al (2020) Precision local positioning mechanism in underground mining using IoT-enabled WiFi platform. Int J Comput Appl 42(3):266–277. https://doi.org/10.1080/1206212X.2018.1551178

    Article  Google Scholar 

  44. Zafari F, Papapanagiotou I, Christidis K (2015) Microlocation for internet-of-things-equipped smart buildings. IEEE Internet Things J 3(1):96–112. https://doi.org/10.1109/JIOT.2015.2442956

    Article  Google Scholar 

  45. Apple Inc. (2020) iBeacon. https://developer.apple.com/ibeacon/

  46. BEHRTECH (2019) A new approach to indoor localization in large-scale environments. https://behrtech.com/blog/largescale-indoor-localization/

  47. Li B, Zhao K, Saydam S, Rizos C, Wang J, Wang Q (2016) Third generation positioning system for underground mine environments : an update on progress. International Global Navigation Satellite Systems (IGNSS)

  48. Baek J, Choi Y, Lee C, Suh J, Lee S (2017) BBUNS: Bluetooth beacon-based underground navigation system to support mine haulage operations. Minerals 7(11). https://doi.org/10.3390/min7110228

  49. Baronti P, Pillai P, Chook VWC, Chessa S, Gotta A, Hu YF (2007) Wireless sensor networks: a survey on the state of the art and the 802.15. 4 and ZigBee standards. Comput Commun 30(7):1655–1695. https://doi.org/10.1016/j.comcom.2006.12.020

    Article  Google Scholar 

  50. Wang Y, Huang L, Yang W (2010) A novel real-time coal miner localization and tracking system based on self-organized sensor networks. EURASIP J Wirel Commun Netw 2010(Article ID 142092):1–14. https://doi.org/10.1155/2010/142092

    Article  Google Scholar 

  51. Liu Z, Li C, Wu D, Dai W, Geng S, Ding Q (2010) A wireless sensor network based personnel positioning scheme in coal mines with blind areas. Sensors (Switzerland) 10(11):9891–9918. https://doi.org/10.3390/s101109891

    Article  Google Scholar 

  52. Liu Z, Li C, Ding Q, Wu D (2010) A coal mine personnel global positioning system based on wireless sensor networks. In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA), pp 7026–7031. https://doi.org/10.1109/WCICA.2010.5554279

  53. Huang X, Zhu W, Lu D (2010) Underground miners localization system based on ZigBee and WebGIS. In: 18th International Conference on Geoinformatics, Geoinformatics 2010, pp 1–5. https://doi.org/10.1109/GEOINFORMATICS.2010.5567542

  54. Zhang B, Su B (2013) Design of position system of underground mines based on zigbee technology. Appl Mech Mater 340:691–695. https://doi.org/10.4028/www.scientific.net/AMM.340.691

    Article  Google Scholar 

  55. Song M, Qian J (2016) Improved sequence-based localization applied in coal mine. Int J Distrib Sens Networks 12(11):1–11. https://doi.org/10.1177/1550147716669615

    Article  Google Scholar 

  56. NIOSH (2019) Advanced tutorial on wireless communication and electronic tracking. Spokane, WA

  57. Mishra PK, Stewart RF, Bolic M, Yagoub MCE (2014) RFID in underground-mining service applications. IEEE Pervasive Comput 13(1):72–79. https://doi.org/10.1109/MPRV.2014.14

    Article  Google Scholar 

  58. Einicke G, Wilson B (2005) Intrinsically safe tags and readers for improved underground mine safety. 31st Biennial International Conference of Safety in Mines Research Institutes (SIMRI 2005)

  59. Einicke G, Rowan G (2005) Real-time risk analysis and hazard management. In: Coal 2005: Coal Operators’ Conference, pp 299–306. https://ro.uow.edu.au/coal/178

  60. Marlborough L, Barrow S, Kent D (2005) Application of tagging systems for personnel and vehicle access control. In: Coal 2005: Coal Operators’ Conference, pp 107–112. https://ro.uow.edu.au/coal/78

  61. Radinovic G, Kwang K (2008) FEASIBILTY STUDY OF RFID / Wi-Fi / BlueTooth WIRELESS TRACKING SYSTEM FOR UNDERGROUND MINE MAPPING – OKLAHOMA. In: Proc. Incorporating Geospatial Technologies into SMCRA Business Processes, Technical Innovation and Professional Services, March 25 – 27, 2008, Atlanta, GA, pp 1–34

  62. Song J-X, Liu Y-F (2011) Design of underground mine locomotive monitoring and tracking management system. Procedia Environ Sci 10:484–490

    Article  Google Scholar 

  63. Rusu SR (2011) Real-time localization in large-scale underground environments using RFID-based node maps. Carleton University

  64. Rusu SR, Hayes MJD, Marshall JA (2011) Localization in large-scale underground environments with RFID. In: Canadian Conference on Electrical and Computer Engineering, pp 001140–001143. https://doi.org/10.1109/CCECE.2011.6030640

  65. Wojtas P, Wiszniowski P (2012) GPS-less positioning, tracking and navigation services for underground mining applications. In: Proceedings of the 5th WSEAS International Conference on Sensors and Signals, pp 132–136

  66. Iturralde D, Soto I, Fuentealba D, Bravo J, Becerra N (2013) A new system based on web services and RFID for tracking people in a pervasive mining environment. In: 2013 IEEE Latin-America Conference on Communications, Santiago, pp 1–5

  67. Yuan Y, Chen C, Guan X, Yang Q (2015) An energy-efficient underground localization system based on heterogeneous wireless networks. Sensors 15(6):12358–12376. https://doi.org/10.3390/s150612358

    Article  Google Scholar 

  68. Fink A, Beikirch H (2015) Sensors & transducers for personnel tracking in coal mine tunnels. 187(4):44–58

  69. Fink A, Beikirch H (2015) MineLoc - Personnel tracking system for longwall coal mining sites. IFAC-PapersOnLine 48(10):215–221. https://doi.org/10.1016/j.ifacol.2015.08.134

    Article  Google Scholar 

  70. Zheng X, Wang B, Zhao J (2019) High-precision positioning of mine personnel based on wireless pulse technology. PLoS ONE 14(7):1–25. https://doi.org/10.1371/journal.pone.0220471

    Article  Google Scholar 

  71. InfSoft (2020) Indoor Positioning with Ultra-wideband. https://www.infsoft.com/technology/positioning-technologies/ultrawideband

  72. Chehri A, Fortier P, Tardif PM (2009) UWB-based sensor networks for localization in mining environments. Ad Hoc Netw 7(5):987–1000. https://doi.org/10.1016/j.adhoc.2008.08.007

    Article  Google Scholar 

  73. Zhu D, Yi K (2011) A hybrid TDOA/RSS localization algorithm based on UWB ranging in underground mines. Adv Res Electron Commer Web Appl Commun 144 ser. C(PART 2):402–407. https://doi.org/10.1007/978-3-642-20370-1_66

    Article  Google Scholar 

  74. Kuo Y-S, Pannuto P, Hsiao K-J, Dutta P (2014) Luxapose: indoor positioning with mobile phones and visible light. In: Proceedings of the 20th annual international conference on Mobile computing and networking, pp 447–458. https://doi.org/10.1145/2639108.2639109

  75. Armstrong J, Sekercioglu YA, Neild A (2013) Visible light positioning: a roadmap for international standardization. IEEE Commun Mag 51(12):68–73

    Article  Google Scholar 

  76. Kim HS, Kim DR, Yang SH, Son YH, Han SK (2013) An indoor visible light communication positioning system using a RF carrier allocation technique. J Light Technol 31(1):134–144. https://doi.org/10.1109/JLT.2012.2225826

    Article  Google Scholar 

  77. Iturralde D, Azurdia-Meza C, Krommenacker N, Soto I, Ghassemlooy Z, Becerra N (2014) A new location system for an underground mining environment using visible light communications. In: 2014 9th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2014, no. 11160517, pp 1165–1169.https://doi.org/10.1109/CSNDSP.2014.6924006

  78. Iturralde D, Seguel F, Soto I, Azurdia C, Khan S (2017) A new VLC system for localization in underground mining tunnels. IEEE Lat Am Trans 15(4):581–587. https://doi.org/10.1109/TLA.2017.7896341

    Article  Google Scholar 

  79. Seguel F, Soto I, Adasme P, Krommenacker N, Charpentier P (2018) Potential and challenges of VLC based IPS in underground mines, 2017 1st South Am. Colloq. Visible Light Commun. SACVLC 2017, vol 2018-Janua, pp 1–6. https://doi.org/10.1109/SACVLC.2017.8267610

  80. Firoozabadi AD et al (2019) A novel frequency domain visible light communication (VLC) three-dimensional trilateration system for localization in underground mining. Appl Sci 9(7):1–15. https://doi.org/10.3390/app9071488

    Article  Google Scholar 

  81. Priyantha NB (2005) The cricket indoor location system. Massachusetts Institute of Technology

  82. Hazas M, Hopper A (2006) Broadband ultrasonic location systems for improved indoor positioning. IEEE Trans Mob Comput 5(5):536–547. https://doi.org/10.1109/TMC.2006.57

    Article  Google Scholar 

  83. Wong G, Embleton T (1985) Variation of the speed of sound in air with humidity and temperature. J Acoust Soc Am 77:1710–1712

    Article  Google Scholar 

  84. Ijaz F, Yang HK, Ahmad AW, Lee C (2013) Indoor positioning: a review of indoor ultrasonic positioning systems. In: 2013 15th International Conference on Advanced Communications Technology (ICACT), pp 1146–1150

  85. Larson E (2012) Vehicle localization in an underground mine using ultrasonic sensors. Colorado School of Mines. http://hdl.handle.net/11124/170574

  86. Arumugam DD, Griffin JD, Stancil DD, Ricketts DS (2014) Three-dimensional position and orientation measurements using magneto-quasistatic fields and complex image theory [measurements corner]. IEEE Antennas Propag Mag 56(1):160–173

    Article  Google Scholar 

  87. Pasku V et al (2017) Magnetic Field-Based Positioning Systems. IEEE Commun Surv Tutorials 19(3):2003–2017. https://doi.org/10.1109/COMST.2017.2684087

    Article  Google Scholar 

  88. Pronenko V, Dudkin F (2016) Electromagnetic system for detection and localization of the miners caught by accident in mine, Geosci. Instrumentation, Methods Data Syst. Discuss., no. August, pp 1–10. https://doi.org/10.5194/gi-2016-20

  89. Abrudan TE, Xiao Z, Markham A, Trigoni N (2016) Underground incrementally deployed magneto-inductive 3-D positioning network. IEEE Trans Geosci Remote Sens 54(8):4376–4391. https://doi.org/10.1109/TGRS.2016.2540722

    Article  Google Scholar 

  90. Thrybom L, Neander J, Hansen E, Landernäs K (2015) Future challenges of positioning in underground mines. IFAC-PapersOnLine 28(10):222–226. https://doi.org/10.1016/j.ifacol.2015.08.135

    Article  Google Scholar 

  91. Ferrer-Coll J, Angskog P, Shabai H, Chilo J, Stenumgaard P (2012) Analysis of wireless communications in underground tunnels for industrial use, In: IECON Proceedings (Industrial Electronics Conference), pp 3216–3220. https://doi.org/10.1109/IECON.2012.6389383

Download references

Funding

This research was funded by the US National Institute for Occupational Safety and Health (NIOSH) under contract no. 75D30119C06044, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Zare.

Ethics declarations

Conflict of Interest

The corresponding author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, M., Battulwar, R., Seamons, J. et al. Applications of Wireless Indoor Positioning Systems and Technologies in Underground Mining: a Review. Mining, Metallurgy & Exploration 38, 2307–2322 (2021). https://doi.org/10.1007/s42461-021-00476-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-021-00476-x

Keywords

Navigation