Skip to main content
Log in

Towards an Understanding of the Use of Disodium Carboxymethyl Trithiocarbonate (DCMT) as an Alternative Depressant in Cu/Mo Sulfide Flotation

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The use of sodium hydrosulfide (NaHS) in most of the operations in by-product molybdenum flotation comes with safety concerns and, in some instances, a high reagent cost. Engineered solutions at the various operations where NaHS is used have reduced the possibility of H2S gas evolution immensely. However, the threat of exposure remains, and this, coupled with the high dosages of NaHS consumed, supports the continued search for alternative depressants. This paper focuses on efforts to study the applicability of disodium carboxymethyl trithiocarbonate (DCMT), an organic depressant, as an alternative to NaHS. Bench-scale rougher flotation results for samples from the Sierrita Cu–Mo plant showed the best DCMT performance at 8 kg/t of DCMT and pH=10.5 with 30 min of shear conditioning and 10 min of flotation conditioning time. The Aminpro plant model simulation confirmed that DCMT with 4–8 kg/t under certain shearing and conditioning times achieved superior or equivalent Mo–Cu separation efficiencies when compared to NaHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nagaraj DR, Ravishankar SA (2007) Flotation Reagents-A critical Overview from an industry Perspective. In Maurice Fuerstenau et al. (ed) Froth Flotation: A Century of Innovation. pp 375–424

  2. Guo B et al (2014) Cyanide chemistry and its effect on mineral flotation. Miner Eng 66-68:25–32

    Article  Google Scholar 

  3. Sheridan GE, Griswold GG (1922) Concentration of ores by flotation US Patent 1,421,585

  4. Prasad MS (1992) Reagents in the mineral industry - recent trends and applications. Miner Eng 5:3–5

    Google Scholar 

  5. Yin WZ et al (2010) Flotation of Xinhua molybdenite using sodium sulfide as modifier. Trans Nonferrous Met Soc China (English Ed) 20:702–706

    Article  Google Scholar 

  6. Nagaraj DR, Gorken A (1989) Potential controlled flotation and depression of copper sulphides and oxides using hydrosulphide in non-xanthate systems. In Processing of Complex Ores, pp 203–213. Elsevier

  7. Merazchiev G et al (2014) Enhancement of the Technological Effectiveness of the Selective Copper-Molybdenum Flotation in inert gas medium (nitrogen). Int Miner Congr, pp 1205–1209

  8. Peng H, Wu D, Abdalla M, Luo W, Jiao W, Bie X (2017) Study of the effect of sodium sulfide as a selective depressor in the separation of chalcopyrite and molybdenite. Minerals 7:51

    Article  Google Scholar 

  9. Chander S (2003) A brief review of pulp potentials in sulfide flotation. Int Miner Process 72:141–150

    Article  Google Scholar 

  10. Bhambhani T et al (2014) Practical aspects of Cu-Mo separations and alternatives to NaHS and Nokes reagent. In IMPC 2014 - 27th International Mineral Processing Congress, pp 1–10

  11. Marticorena MA et al (1994) Inco develops new pyrrhotite depressant Proc. Innov. Miner. Process. Conf. Laurentian Univ. Sudbury ON, Canada 15–33

  12. Kelebek S, Tukel C (1999) The effect of sodium metabisulfite and triethylenetetramine system on pentlandite-pyrrhotite separation. Int J Miner Process 57:135–152

    Article  Google Scholar 

  13. Pugh RJ (1989) Macromolecular organic depressants in sulphide flotation-a review, 2. Principles, Theoretical analysis off the forces involved in the depressant action. Int J Miner Process 25:131–146

    Article  Google Scholar 

  14. Baldauf H, Schubert H (1980) Correlations between structure and adsorption for organic depressants in flotation. Fine Part Process 1:767–786

    Google Scholar 

  15. Pugh RJ (1989) Macromolecular organic depressants in sulphide flotation-a review, 1. Principles, types and applications. Int J Miner Process 25:101–130

    Article  Google Scholar 

  16. Chen JH et al (2010) Molecular structures and activity of organic depressants for marmatite, jamesonite and pyrite flotation. Trans Nonferrous Met Soc China (English Ed) 20:1993–1999

    Article  Google Scholar 

  17. Bulatovic SM (1999) Use of organic polymers in the flotation of polymetallic ores: a review. Miner Eng 12:341–354

    Article  Google Scholar 

  18. Yin Z-G et al (2017) Depressing behaviors and mechanism of disodium bis (carboxymethyl) trithiocarbonate on separation of chalcopyrite and molybdenite. Trans Nonferrous Metals Soc China 27:883–890

    Article  Google Scholar 

  19. Yuan D et al (2019) Flotation separation of Cu-Mo sulfides by O-Carboxymethyl chitosan. Miner Eng 134:202–205

    Article  Google Scholar 

  20. Qiu X et al (2018) An alternative depressant of chalcopyrite in Cu–Mo differential flotation and its interaction mechanism. Minerals 9:1

    Article  Google Scholar 

  21. Timbillah S (2019) Mechanism for disodium carboxymethyl trithiocarbonate (Orfom® D8) depression in chalcopyrite-molybdenite flotation systems, Montana Tech, Graduate Theses & Non-Theses. 224

  22. Timbillah S et al (2019) Orfom® D8: a viable replacement for NaHS as a depressant in the chalcopyrite-molybdenite flotation systems Proceedings of the 58th Conference of Metallurgists (COM 2019) (Vancouver)

  23. Timbillah S, Young C, Das A (2018) A fundamental study of disodium carboxymethyl trithiocarbonate (Orfom® D8) in flotation separation of copper-molybdenum sulfides extraction 2018. Springer, Cham, pp 2927–2945

    Google Scholar 

  24. Antonio J, Esparza V (2017) “ Uso del Depressor Orfom® D8 en planta de Molibdeno de Concentradora I XXXII Convención Internacional de Minería Guadalajara, Jalisco, México

  25. Amelunxen P et al (2014) The implications of the froth recovery at the laboratory scale. Miner Eng 66–68:54–61

    Article  Google Scholar 

  26. Amelunxen P, Ladouceur R (2019) In: Dunne RC, Kawatra SK, Young CA (eds) Applied flotation modeling SME Mineral Processing & Extractive Metallurgy Handbook. Society for Mining, Metallurgy and Exploration Inc., pp 1053–1065

  27. Ladouceur R (2018) High fidelity kinetic model for flotation: applications to rare earth elements and copper/ molybdenum separations. Montana Tech, Graduate Theses & Non-Theses. 172

  28. Amelunxen P et al (2018) A phenomenological model of entrainment and froth recovery for interpreting laboratory flotation kinetics tests. Miner Eng 125:60–65

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Freeport-McMoRan Technology Center, Tucson, for their support in this project.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S. T., L. H., P. L., and C. S.; methodology, S. T., P. L., and C. S.; software, P. L.; validation, P. L.; formal analysis, P. L., and S. T.; investigation, T. F.; resources, B. F.; data curation, P. L.; writing—original draft preparation, S. T. and P. L.; writing—review and editing, S. T., B. F., P. L., and L. H.; visualization, P. L.; supervision, L. H.; project administration, L. H.; C. S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Simon Timbillah.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

The views and conclusions contained in this document are those of the authors. They should not be interpreted as representing the official policies, either expressed or implied, of Freeport-McMoRan Inc. or Chevron Philips Chemicals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timbillah, S., Fosu, B., Lan, P. et al. Towards an Understanding of the Use of Disodium Carboxymethyl Trithiocarbonate (DCMT) as an Alternative Depressant in Cu/Mo Sulfide Flotation. Mining, Metallurgy & Exploration 38, 1463–1476 (2021). https://doi.org/10.1007/s42461-021-00423-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-021-00423-w

Keywords

Navigation