Skip to main content
Log in

Recent Advances in Studying Colloidal Interactions in Mineral Processing

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Colloidal interactions play a critical role in mineral processing, including grinding, physical separation (particularly flotation), dewatering, and tailings management. Despite great energy input in comminution to liberate valuables from gangues, hetero-coagulation between valuables and gangues would prevent the separation of valuables from gangues. On the other hand, selective coagulation/flocculation to increase the size of desired fine particles could enhance physical separation and dewatering, while dispersion is needed for fine grinding. To control the state of colloidal dispersions by creating favorable conditions, it is of paramount importance to study colloidal interactions in a relevant system and understand underlying mechanisms. This review summarizes recent advances in developing the-state-of-the-art techniques and novel methods of measuring colloidal forces, including atomic force microscope, surface force apparatus, zeta potential distribution measurement, quartz crystal microbalance with dissipation, and our recently developed integrated dynamic force apparatus. The basic principle of each technique was introduced first, followed by a summary of critical information derived for the relevant mineral processing systems. Finally, the pros and cons of each technique were discussed to emphasize the use of complementary techniques that assist in solving fundamental problems in mineral processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu J, Xu Z (2007) Role of flotation reagents in tuning colloidal forces for sphalerite-silica separation. Can Metall Q 46:329–340. https://doi.org/10.1179/cmq.2007.46.3.329

    Article  Google Scholar 

  2. Sivamohan R (1990) The problem of recovering very fine particles in mineral processing — a review. Int J Miner Process 28:247–288. https://doi.org/10.1016/0301-7516(90)90046-2

    Article  Google Scholar 

  3. Miettinen T, Ralston J, Fornasiero D (2010) The limits of fine particle flotation. Miner Eng 23:420–437. https://doi.org/10.1016/j.mineng.2009.12.006

    Article  Google Scholar 

  4. Fuerstenau DW, Li C, Hanson JS (1988) Shear flocculation and carrier flotation of fine hematite. In: Plumpton AJ (ed) Production and processing of fine particles. Pergamon, Amsterdam, pp 329–335

    Chapter  Google Scholar 

  5. Velamakanni BV, Fuerstenau DW (1993) The effect of the adsorption of polymeric additives on the wet grinding of minerals 2. Dispersion and fine grinding of concentrated suspensions. Powder Technol 75:11–19

    Article  Google Scholar 

  6. Hogg R, Healy TW, Fuerstenau DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Society 62:1638–1651. https://doi.org/10.1039/TF9666201638

    Article  Google Scholar 

  7. Pashley RM (1981) Hydration forces between mica surfaces in aqueous electrolyte solutions. J Colloid Interface Sci 80:153–162. https://doi.org/10.1016/0021-9797(81)90171-5

    Article  Google Scholar 

  8. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic Press, London

    Google Scholar 

  9. Xu Z, Yoon R-H (1989) The role of hydrophobic interactions in coagulation. J Colloid Interface Sci 132:532–541

    Article  Google Scholar 

  10. Israelachvili J, Pashley R (1982) The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300:341–342

    Article  Google Scholar 

  11. Churaev NV, Derjaguin BV (1985) Inclusion of structural forces in the theory of stability of colloids and films. J Colloid Interface Sci 103:542–553. https://doi.org/10.1016/0021-9797(85)90129-8

    Article  Google Scholar 

  12. Horn RG, Israelachvili JN (1980) Direct measurement of forces due to solvent structure. Chem Phys Lett 71:192–194. https://doi.org/10.1016/0009-2614(80)80144-8

    Article  Google Scholar 

  13. Claesson P.M., Go¨lander C.-G. (1987) Direct measurements of steric interactions between mica surfaces covered with electrostatically bound low-molecular-weight polyethylene oxide. J Colloid Interface Sci 117: 366–374.https://doi.org/10.1016/0021-9797(87)90395-X

  14. Ingersent K, Klein J, Pincus P (1990) Forces between surfaces with adsorbed polymers. 3. Θ solvent. Calculations and comparison with experiment. Macromolecules 23:548–560. https://doi.org/10.1021/ma00204a031

    Article  Google Scholar 

  15. Toikka G, Hayes RA, Ralston J (1996) Surface forces between spherical ZnS particles in aqueous electrolyte. Langmuir 12:3783–3788. https://doi.org/10.1021/la951534u

    Article  Google Scholar 

  16. Toikka G, Hayes RA, Ralston J (1998) Surface forces between zinc sulfide and silica in aqueous electrolyte. Colloids Surf A Physicochem Eng Asp 141:3–8. https://doi.org/10.1016/S0927-7757(98)00198-8

    Article  Google Scholar 

  17. Liu J, Xu Z, Masliyah J (2003) Studies on bitumen−silica interaction in aqueous solutions by atomic force microscopy. Langmuir 19:3911–3920. https://doi.org/10.1021/la0268092

    Article  Google Scholar 

  18. Zhao H, Long J, Masliyah JH, Xu Z (2006) Effect of divalent cations and surfactants on silica−bitumen interactions. Ind Eng Chem Res 45:7482–7490. https://doi.org/10.1021/ie060348o

    Article  Google Scholar 

  19. Basu S, Nandakumar K, Masliyah JH (1996) A study of oil displacement on model surfaces. J Colloid Interface Sci 182:82–94. https://doi.org/10.1006/jcis.1996.0439

    Article  Google Scholar 

  20. Xu Z, Chi R, Difeo T, Finch JA (2000) Surface forces between sphalerite and silica particles in aqueous solutions. J Adhes Sci Technol 14:1813–1827. https://doi.org/10.1163/156856100743257

    Article  Google Scholar 

  21. Muster TH, Toikka G, Hayes RA, Prestidge CA, Ralston J (1996) Interactions between zinc sulphide particles under flotation-related conditions. Colloids Surf A Physicochem Eng Asp 106:203–211. https://doi.org/10.1016/0927-7757(95)03388-2

    Article  Google Scholar 

  22. Yoon R, Pazhianur R (1998) Direct force measurement between hydrophobic glass sphere and covellite electrode in potassium ethyl xanthate solutions at pH 9.2. Colloids Surf A Physicochem Eng Asp 144:59–69. https://doi.org/10.1016/S0927-7757(98)00502-0

    Article  Google Scholar 

  23. Huynh L, Feiler A, Michelmore A, Ralston J, Jenkins P (2000) Control of slime coatings by the use of anionic phosphates: a fundamental study. Miner Eng 13:1059–1069. https://doi.org/10.1016/S0892-6875(00)00090-X

    Article  Google Scholar 

  24. Schramm LL, Stasiuk EN, Turner D (2003) The influence of interfacial tension in the recovery of bitumen by water-based conditioning and flotation of Athabasca oil sands. Fuel Process Technol 80:101–118. https://doi.org/10.1016/S0378-3820(02)00224-2

    Article  Google Scholar 

  25. Vergouw JM, Difeo A, Xu Z, Finch JA (1998) An agglomeration study of sulphide minerals using zeta potential and settling rate. Part II: sphalerite/pyrite and sphalerite/galena. Miner Eng 11:605–614. https://doi.org/10.1016/S0892-6875(98)00045-4

    Article  Google Scholar 

  26. Lange AG, Skinner WM, Smart RSC (1997) Fine: coarse particle interactions and aggregation in sphalerite flotation. Miner Eng 10:681–693. https://doi.org/10.1016/S0892-6875(97)00048-4

    Article  Google Scholar 

  27. Yotsumoto H, Yoon R-H (1993) Application of extended DLVO theory. I Stability of Rutile Suspensions J Colloid Interface Sci 157:426–433. https://doi.org/10.1006/jcis.1993.1205

    Article  Google Scholar 

  28. Horn RG, Bachmann DJ, Connor JN, Miklavcic SJ (1996) The effect of surface and hydrodynamic forces on the shape of a fluid drop approaching a solid surface. J Phys Condens Matter 8:9483–9490

    Article  Google Scholar 

  29. Pushkarova RA, Horn RG (2008) Bubble−solid interactions in water and electrolyte solutions. Langmuir 24:8726–8734. https://doi.org/10.1021/la8007156

    Article  Google Scholar 

  30. Manica R, Connor JN, Clasohm LY, Carnie SL, Horn RG, Chan DYC (2008) Transient responses of a wetting film to mechanical and electrical perturbations. Langmuir 24:1381–1390. https://doi.org/10.1021/la701562q

    Article  Google Scholar 

  31. Xing Y, Gui X, Pan L, Pinchasik B-E, Cao Y, Liu J, Kappl M, Butt H-J (2017) Recent experimental advances for understanding bubble-particle attachment in flotation. Adv Colloid Interf Sci 246:105–132. https://doi.org/10.1016/j.cis.2017.05.019

    Article  Google Scholar 

  32. Ralston J, Larson I, Rutland M, Feiler A, Kleijn JM (2005) Atomic force microscopy and direct surface force measurements. Pure Appl Chem 77:2149–2170

    Article  Google Scholar 

  33. Butt HJ, Berger R, Bonaccurso E, Chen Y, Wang J (2007) Impact of atomic force microscopy on interface and colloid science. Adv Colloid Interf Sci 133:91–104. https://doi.org/10.1016/j.cis.2007.06.001

    Article  Google Scholar 

  34. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152. https://doi.org/10.1016/j.surfrep.2005.08.003

    Article  Google Scholar 

  35. Butt H-J (1994) A technique for measuring the force between a colloidal particle in water and a bubble. J Colloid Interface Sci 166:109–117. https://doi.org/10.1006/jcis.1994.1277

    Article  Google Scholar 

  36. Ducker WA, Xu Z, Israelachvili JN (1994) Measurements of hydrophobic and DLVO forces in bubble-surface interactions in aqueous solutions. Langmuir 10:3279–3289. https://doi.org/10.1021/la00021a061

    Article  Google Scholar 

  37. Fielden ML, Hayes RA, Ralston J (1996) Surface and capillary forces affecting air bubble−particle interactions in aqueous electrolyte. Langmuir 12:3721–3727. https://doi.org/10.1021/la960145c

    Article  Google Scholar 

  38. Mulvaney P, Perera JM, Biggs S, Grieser F, Stevens GW (1996) The direct measurement of the forces of interaction between a colloid particle and an oil droplet. J Colloid Interface Sci 183:614–616. https://doi.org/10.1006/jcis.1996.0588

    Article  Google Scholar 

  39. Wang L, Sharp D, Masliyah J, Xu Z (2013) Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus. Langmuir 29:3594–3603. https://doi.org/10.1021/la304490e

    Article  Google Scholar 

  40. Shahalami M, Wang L, Wu C, Masliyah JH, Xu Z, Chan DYC (2015) Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids. Adv Colloid Interf Sci 217:31–42. https://doi.org/10.1016/j.cis.2014.12.004

    Article  Google Scholar 

  41. Zhang X, Manica R, Tchoukov P, Liu Q, Xu Z (2017) Effect of approach velocity on thin liquid film drainage between an air bubble and a flat solid surface. J Phys Chem C 121:5573–5584. https://doi.org/10.1021/acs.jpcc.6b11502

    Article  Google Scholar 

  42. Zhang X, Tchoukov P, Manica R, Wang L, Liu Q, Xu Z (2016) Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus. Soft Matter 12:9105–9114. https://doi.org/10.1039/C6SM02067D

    Article  Google Scholar 

  43. Liu J, Zhou Z, Xu Z, Masliyah J (2002) Bitumen–clay interactions in aqueous media studied by zeta potential distribution measurement. J Colloid Interface Sci 252:409–418. https://doi.org/10.1006/jcis.2002.8471

    Article  Google Scholar 

  44. Yan L, Englert AH, Masliyah JH, Xu Z (2011) Determination of anisotropic surface characteristics of different phyllosilicates by direct force measurements. Langmuir 27:12996–13007. https://doi.org/10.1021/la2027829

    Article  Google Scholar 

  45. Chen Q, Xu S, Liu Q, Masliyah J, Xu Z (2016) QCM-D study of nanoparticle interactions. Adv Colloid Interf Sci 233:94–114. https://doi.org/10.1016/j.cis.2015.10.004

    Article  Google Scholar 

  46. Ralston J., Larson I., Rutland M., Feiler A.,Kleijn M. (2005) Atomic force microscopy and direct surface force measurements

  47. Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241

    Article  Google Scholar 

  48. Butt H-J, Jaschke M, Ducker W (1995) Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. Bioelectrochem Bioenerg 38:191–201. https://doi.org/10.1016/0302-4598(95)01800-T

    Article  Google Scholar 

  49. Hartley PG, Larson I, Scales PJ (1997) Electrokinetic and direct force measurements between silica and mica surfaces in dilute electrolyte solutions. Langmuir 13:2207–2214. https://doi.org/10.1021/la960997c

    Article  Google Scholar 

  50. Craig VSJ, Ninham BW, Pashley RM (1999) Direct measurement of hydrophobic forces: a study of dissolved gas, approach rate, and neutron irradiation. Langmuir 15:1562–1569. https://doi.org/10.1021/la9805793

    Article  Google Scholar 

  51. Tang Y, Zhang X, Choi P, Liu Q, Xu Z (2017) Probing single-molecule adhesion of a stimuli responsive oligo(ethylene glycol) methacrylate copolymer on a molecularly smooth hydrophobic MoS2 basal plane surface. Langmuir 33:10429–10438. https://doi.org/10.1021/acs.langmuir.7b01187

    Article  Google Scholar 

  52. Israelachvili JN (2011) Chapter 12 - force-measuring techniques. Intermolecular and surface forces, 3rd edn. Academic Press, San Diego, pp 223–252

    Google Scholar 

  53. FrÖberg JC, Rojas OJ, Claesson PM (1999) Surface forces and measuring techniques. Int J Miner Process 56:1–30

    Article  Google Scholar 

  54. Pashley RM, Israelachvili JN (1984) Dlvo and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions. J Colloid Interface Sci 97:446–455. https://doi.org/10.1016/0021-9797(84)90316-3

    Article  Google Scholar 

  55. Wood J, Sharma R (1995) How long is the long-range hydrophobic attraction? Langmuir 11:4797–4802. https://doi.org/10.1021/la00012a035

    Article  Google Scholar 

  56. Lu H, Xiang L, Cui X, Liu J, Wang Y, Narain R, Zeng H (2016) Molecular weight dependence of synthetic glycopolymers on flocculation and dewatering of fine particles. Langmuir 32:11615–11622. https://doi.org/10.1021/acs.langmuir.6b03072

    Article  Google Scholar 

  57. Liu J, Xu Z, Masliyah J (2004) Interaction between bitumen and fines in oil sands extraction system: implication to bitumen recovery. Can J Chem Eng 82:655–666. https://doi.org/10.1002/cjce.5450820404

    Article  Google Scholar 

  58. Zetaphoremeter Zeta Potential Analyzer (electro-kinetic analyzer), electrophoretic method for biological applications and fundamental research.

  59. Deng M, Xu Z, Liu Q (2014) Impact of gypsum supersaturated process water on the interactions between silica and zinc sulphide minerals. Miner Eng 55:172–180. https://doi.org/10.1016/j.mineng.2013.09.017

    Article  Google Scholar 

  60. Huang J., Li H., Liu Q., Xu Z., Masliyah J., Jiang J.,Gorain B. (2016) Enhancing gold recovery from Nevada double refractory gold ores using a novel dual bubble generator, IMPC. Canadian Institute of Mining, Metallurgy and Petroleum, Quebec City, p. 2527

  61. Somasundaran P, Healy TW, Fuerstenau DW (1966) The aggregation of colloidal alumina dispersions by adsorbed surfactant ions. J Colloid Interface Sci 22:599–605. https://doi.org/10.1016/0021-9797(66)90054-3

    Article  Google Scholar 

  62. Xu Z, Yoon R-H (1990) A study of hydrophobic coagulation. J Colloid Interface Sci 134:427–434. https://doi.org/10.1016/0021-9797(90)90153-F

    Article  Google Scholar 

  63. Israelachvili JN, Pashley RM (1984) Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J Colloid Interface Sci 98:500–514. https://doi.org/10.1016/0021-9797(84)90177-2

    Article  Google Scholar 

  64. Claesson PM, Christenson HK (1988) Very long range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water. J Phys Chem 92:1650–1655. https://doi.org/10.1021/j100317a052

    Article  Google Scholar 

  65. Wang Q, Heiskanen K (1992) Dispersion selectivity and heterocoagulation in apatite-hematite-phlogopite fine particle suspensions II. Dispersion selectivities of the mineral mixtures. Int J Miner Process 35:133–145. https://doi.org/10.1016/0301-7516(92)90009-L

    Article  Google Scholar 

  66. Xu Z, Liu J, Choung JW, Zhou Z (2003) Electrokinetic study of clay interactions with coal in flotation. Int J Miner Process 68:183–196 https://doi.org/10.1016/S0301-7516(02)00043-1

    Article  Google Scholar 

  67. Kusuma AM, Liu Q, Zeng H (2014) Understanding interaction mechanisms between pentlandite and gangue minerals by zeta potential and surface force measurements. Miner Eng 69:15–23. https://doi.org/10.1016/j.mineng.2014.07.005

    Article  Google Scholar 

  68. Wu C, Wang L, Harbottle D, Masliyah J, Xu Z (2015) Studying bubble–particle interactions by zeta potential distribution analysis. J Colloid Interface Sci 449:399–408. https://doi.org/10.1016/j.jcis.2015.01.040

    Article  Google Scholar 

  69. Boström M, Williams DRM, Ninham BW (2001) Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87:168103. https://doi.org/10.1103/PhysRevLett.87.168103

    Article  Google Scholar 

  70. Wang Y, Wang L, Hampton MA, Nguyen AV (2013) Atomic force microscopy study of forces between a silica sphere and an oxidized silicon wafer in aqueous solutions of NaCl, KCl, and CsCl at concentrations up to saturation. J Phys Chem C 117:2113–2120. https://doi.org/10.1021/jp3092495

    Article  Google Scholar 

  71. Mitchell TK, Nguyen AV, Evans GM (2005) Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation. Adv Colloid Interf Sci 114:227–237. https://doi.org/10.1016/j.cis.2004.08.009

    Article  Google Scholar 

  72. Liu J, Zhang L, Xu Z, Masliyah J (2006) Colloidal interactions between asphaltene surfaces in aqueous solutions. Langmuir 22:1485–1492. https://doi.org/10.1021/la052755v

    Article  Google Scholar 

  73. Yarranton HW, Hussein H, Masliyah JH (2000) Water-in-hydrocarbon emulsions stabilized by asphaltenes at low concentrations. J Colloid Interface Sci 228:52–63. https://doi.org/10.1006/jcis.2000.6938

    Article  Google Scholar 

  74. Liu J, Xu Z, Masliyah J (2005) Colloidal forces between bitumen surfaces in aqueous solutions measured with atomic force microscope. Colloids Surf A Physicochem Eng Asp 260:217–228. https://doi.org/10.1016/j.colsurfa.2005.03.026

    Article  Google Scholar 

  75. Drzymala J, Fuerstenau DW (1981) Selective flocculation of hematite in the hematite-quartz-ferric ion-polyacrylic acid system. Part 1, activation and deactivation of quartz. Int J Miner Process 8:265–277. https://doi.org/10.1016/0301-7516(81)90016-8

    Article  Google Scholar 

  76. Alamgir A, Harbottle D, Masliyah J, Xu Z (2012) Al-PAM assisted filtration system for abatement of mature fine tailings. Chem Eng Sci 80:91–99. https://doi.org/10.1016/j.ces.2012.06.010

    Article  Google Scholar 

  77. Nasim T, Bandyopadhyay A (2012) Introducing different poly (vinyl alcohol)s as new flocculant for kaolinated waste water. Sep Purif Technol 88:87–94. https://doi.org/10.1016/j.seppur.2011.12.016

    Article  Google Scholar 

  78. Ji Y, Lu Q, Liu Q, Zeng H (2013) Effect of solution salinity on settling of mineral tailings by polymer flocculants. Colloids Surf A Physicochem Eng Asp 430:29–38. https://doi.org/10.1016/j.colsurfa.2013.04.006

    Article  Google Scholar 

  79. Abraham T, Christendat D, Xu Z, Masliyah J, Gohy JF, Jérôme R (2004) Role of polyelectrolyte charge density in tuning colloidal forces. AIChE J 50:2613–2626. https://doi.org/10.1002/aic.10255

    Article  Google Scholar 

  80. Feiler A, Jenkins P, Ralston J (2000) Metal oxide surfaces separated by aqueous solutions of linear polyphosphates: DLVO and non-DLVO interaction forces. PCCP 2:5678–5683. https://doi.org/10.1039/B005505K

    Article  Google Scholar 

  81. Yoon R-H, Mao L (1996) Application of extended DLVO theory, IV: Derivation of Flotation Rate Equation from First Principles. J Colloid Interface Sci 181:613–626. https://doi.org/10.1006/jcis.1996.0419

    Article  Google Scholar 

  82. Rabinovich YI, Yoon RH (1994) Use of atomic force microscope for the measurements of hydrophobic forces between silanated silica plate and glass sphere. Langmuir 10:1903–1909. https://doi.org/10.1021/la00018a048

    Article  Google Scholar 

  83. Yoon R-H, Ravishankar SA (1996) Long-range hydrophobic forces between mica surfaces in dodecylammonium chloride solutions in the presence of dodecanol. J Colloid Interface Sci 179:391–402. https://doi.org/10.1006/jcis.1996.0230

    Article  Google Scholar 

  84. Yoon R-H, Ravishankar SA (1996) Long-range hydrophobic forces between mica surfaces in alkaline dodecylammonium chloride solutions. J Colloid Interface Sci 179:403–411. https://doi.org/10.1006/jcis.1996.0231

    Article  Google Scholar 

  85. Rabinovich YI, Guzonas DA, Yoon RH (1993) Role of chain order in the long-range attractive force between hydrophobic surfaces. Langmuir 9:1168–1170. https://doi.org/10.1021/la00029a002

    Article  Google Scholar 

  86. Rabinovich YI, Derjaguin BV (1988) Interaction of hydrophobized filaments in aqueous electrolyte solutions. Colloids Surf 30:243–251. https://doi.org/10.1016/0166-6622(88)80209-9

    Article  Google Scholar 

  87. Assemi S, Nguyen AV, Miller JD (2008) Direct measurement of particle–bubble interaction forces using atomic force microscopy. Int J Miner Process 89:65–70. https://doi.org/10.1016/j.minpro.2008.09.005

    Article  Google Scholar 

  88. Nguyen AV, Nalaskowski J, Miller JD (2003) A study of bubble–particle interaction using atomic force microscopy. Miner Eng 16:1173–1181. https://doi.org/10.1016/j.mineng.2003.07.013

    Article  Google Scholar 

  89. Englert AH, Krasowska M, Fornasiero D, Ralston J, Rubio J (2009) Interaction force between an air bubble and a hydrophilic spherical particle in water, measured by the colloid probe technique. Int J Miner Process 92:121–127. https://doi.org/10.1016/j.minpro.2009.03.003

    Article  Google Scholar 

  90. Grabbe A, Horn RG (1993) Double-layer and hydration forces measured between silica sheets subjected to various surface treatments. J Colloid Interface Sci 157:375–383. https://doi.org/10.1006/jcis.1993.1199

    Article  Google Scholar 

  91. Yoon R-H, Flinn DH, Rabinovich YI (1997) Hydrophobic interactions between dissimilar surfaces. J Colloid Interface Sci 185:363–370. https://doi.org/10.1006/jcis.1996.4583

    Article  Google Scholar 

  92. Usui S, Sasaki H, Matsukawa H (1981) The dependence of zeta potential on bubble size as determined by the dorn effect. J Colloid Interface Sci 81:80–84. https://doi.org/10.1016/0021-9797(81)90304-0

    Article  Google Scholar 

  93. Kubota K, Hayashi S, Inaoka M (1983) A convenient experimental method for measurement of zeta-potentials generating on the bubble suspended in aqueous surfactant solutions. J Colloid Interface Sci 95:362–369. https://doi.org/10.1016/0021-9797(83)90196-0

    Article  Google Scholar 

  94. Yoon R-H, Yordan JL (1986) Zeta-potential measurements on microbubbles generated using various surfactants. J Colloid Interface Sci 113:430–438. https://doi.org/10.1016/0021-9797(86)90178-5

    Article  Google Scholar 

  95. Tabor RF, Grieser F, Dagastine RR, Chan DYC (2012) Measurement and analysis of forces in bubble and droplet systems using AFM. J Colloid Interface Sci 371:1–14. https://doi.org/10.1016/j.jcis.2011.12.047

    Article  Google Scholar 

  96. Manor O, Vakarelski IU, Stevens GW, Grieser F, Dagastine RR, Chan DYC (2008) Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions. Langmuir 24:11533–11543. https://doi.org/10.1021/la802206q

    Article  Google Scholar 

  97. Shi C, Chan DYC, Liu Q, Zeng H (2014) Probing the hydrophobic interaction between air bubbles and partially hydrophobic surfaces using atomic force microscopy. J Phys Chem C 118:25000–25008. https://doi.org/10.1021/jp507164c

    Article  Google Scholar 

  98. Manor O, Vakarelski IU, Tang X, O’Shea SJ, Stevens GW, Grieser F, Dagastine RR, Chan DYC (2008) Hydrodynamic boundary conditions and dynamic forces between bubbles and surfaces. Phys Rev Lett 101:024501

    Article  Google Scholar 

  99. Pan L, Yoon R-H (2016) Measurement of hydrophobic forces in thin liquid films of water between bubbles and xanthate-treated gold surfaces. Miner Eng 98:240–250. https://doi.org/10.1016/j.mineng.2016.09.005

    Article  Google Scholar 

  100. Vinogradova OI, Koynov K, Best A, Feuillebois F (2009) Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation. Phys Rev Lett 102:118302. https://doi.org/10.1103/PhysRevLett.102.118302

    Article  Google Scholar 

  101. Shi C, Cui X, Xie L, Liu Q, Chan DYC, Israelachvili JN, Zeng H (2015) Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity. ACS Nano 9:95–104. https://doi.org/10.1021/nn506601j

    Article  Google Scholar 

  102. Albijanic B, Amini E, Wightman E, Ozdemir O, Nguyen AV, Bradshaw DJ (2011) A relationship between the bubble–particle attachment time and the mineralogy of a copper–sulphide ore. Miner Eng 24:1335–1339. https://doi.org/10.1016/j.mineng.2011.06.005

    Article  Google Scholar 

  103. Hewitt D, Fornasiero D, Ralston J (1994) Bubble particle attachment efficiency. Miner Eng 7:657–665. https://doi.org/10.1016/0892-6875(94)90097-3

    Article  Google Scholar 

  104. Albijanic B, Nimal Subasinghe GK, Bradshaw DJ, Nguyen AV (2015) Influence of liberation on bubble–particle attachment time in flotation. Miner Eng 74:156–162. https://doi.org/10.1016/j.mineng.2014.08.004

    Article  Google Scholar 

  105. Fa K, Nguyen AV, Miller JD (2006) Interaction of calcium dioleate collector colloids with calcite and fluorite surfaces as revealed by AFM force measurements and molecular dynamics simulation. Int J Miner Process 81:166–177. https://doi.org/10.1016/j.minpro.2006.08.006

    Article  Google Scholar 

  106. Fa K, Jiang T, Nalaskowski J, Miller JD (2003) Interaction forces between a calcium dioleate sphere and calcite/fluorite surfaces and their significance in flotation. Langmuir 19:10523–10530. https://doi.org/10.1021/la035335j

    Article  Google Scholar 

  107. Xing Y, Li C, Gui X, Cao Y (2017) Interaction forces between paraffin/stearic acid and fresh/oxidized coal particles measured by atomic force microscopy. Energy Fuel 31:3305–3312. https://doi.org/10.1021/acs.energyfuels.6b02856

    Article  Google Scholar 

  108. McNamee CE, Butt H-J, Higashitani K, Vakarelski IU, Kappl M (2009) Interaction of cationic hydrophobic surfactants at negatively charged surfaces investigated by atomic force microscopy. Langmuir 25:11509–11515. https://doi.org/10.1021/la901414y

    Article  Google Scholar 

  109. Teng F, Liu Q, Zeng H (2012) In situ kinetic study of zinc sulfide activation using a quartz crystal microbalance with dissipation (QCM-D). J Colloid Interface Sci 368:512–520. https://doi.org/10.1016/j.jcis.2011.10.048

    Article  Google Scholar 

  110. Harris PJ, Richter K (1985) Flotation of sulphide minerals. Elsevier, Amsterdam

    Google Scholar 

  111. Biegler T, Horne MD (1985) The electrochemistry of surface oxidation of chalcopyrite. J Electrochem Soc 132:1363–1369

    Article  Google Scholar 

  112. Hanson JS, Fuerstenau DW (1991) The electrochemical and flotation behavior of chalcocite and mixed oxide/sulfide ores. Int J Miner Process 33:33–47. https://doi.org/10.1016/0301-7516(91)90041-G

    Article  Google Scholar 

  113. Fuerstenau DW, Shibata J (1999) On using electrokinetics to interpret the flotation and interfacial behavior of manganese dioxide. Int J Miner Process 57:205–217. https://doi.org/10.1016/S0301-7516(99)00018-6

    Article  Google Scholar 

  114. Kirjavainen V, Lyyra M, Laapas H, Heiskanen K (1992) Study on using potentiostatic control in selective sulfide flotation. Miner Eng 5:1279–1286

    Article  Google Scholar 

  115. Rutland M, Waltermo A, Claesson P (1992) pH-dependent interactions of mica surfaces in aqueous dodecylammonium/dodecylamine solutions. Langmuir 8:176–183. https://doi.org/10.1021/la00037a033

    Article  Google Scholar 

  116. Pugh RJ, Rutland MW, Manev E, Claesson PM (1996) Dodecylamine collector — pH effect on mica flotation and correlation with thin aqueous foam film and surface force measurements. Int J Miner Process 46:245–262. https://doi.org/10.1016/0301-7516(95)00085-2

    Article  Google Scholar 

  117. Pugh RJ (1986) The role of the solution chemistry of dodecylamine and oleic acid collectors in the flotation of fluorite. Colloids Surf 18:19–41. https://doi.org/10.1016/0166-6622(86)80191-3

    Article  Google Scholar 

  118. Zhang J, Yoon R-H, Mao M, Ducker WA (2005) Effects of degassing and ionic strength on AFM force measurements in octadecyltrimethylammonium chloride solutions. Langmuir 21:5831–5841. https://doi.org/10.1021/la047398n

    Article  Google Scholar 

  119. Xu Z, Ducker W, Israelachvili J (1996) Forces between crystalline alumina (sapphire) surfaces in aqueous sodium dodecyl sulfate surfactant solutions. Langmuir 12:2263–2270. https://doi.org/10.1021/la950939b

    Article  Google Scholar 

  120. Liu J, Xu Z, Masliyah J (2004) Role of fine clays in bitumen extraction from oil sands. AIChE J 50:1917–1927. https://doi.org/10.1002/aic.10174

    Article  Google Scholar 

  121. Holuszko ME, Franzidis JP, Manlapig EV, Hampton MA, Donose BC, Nguyen AV (2008) The effect of surface treatment and slime coatings on ZnS hydrophobicity. Miner Eng 21:958–966. https://doi.org/10.1016/j.mineng.2008.03.006

    Article  Google Scholar 

  122. Clarke P, Fornasiero D, Ralston J, Smart RSC (1995) A study of the removal of oxidation products from sulfide mineral surfaces. Miner Eng 8:1347–1357. https://doi.org/10.1016/0892-6875(95)00101-U

    Article  Google Scholar 

  123. Bandini P, Prestidge CA, Ralston J (2001) Colloidal iron oxide slime coatings and galena particle flotation. Miner Eng 14:487–497. https://doi.org/10.1016/S0892-6875(01)00036-X

    Article  Google Scholar 

  124. Beattie DA, Huynh L, Kaggwa GB, Ralston J (2006) Influence of adsorbed polysaccharides and polyacrylamides on talc flotation. Int J Miner Process 78:238–249. https://doi.org/10.1016/j.minpro.2005.11.001

    Article  Google Scholar 

  125. Subramanian S, Laskowski JS (1993) Adsorption of dextrin onto graphite. Langmuir 9:1330–1333. https://doi.org/10.1021/la00029a029

    Article  Google Scholar 

  126. Beaussart A, Parkinson L, Mierczynska-Vasilev A, Ralston J, Beattie DA (2009) Effect of adsorbed polymers on bubble−particle attachment. Langmuir 25:13290–13294. https://doi.org/10.1021/la903145h

    Article  Google Scholar 

  127. Wie JM, Fuerstenau DW (1974) The effect of dextrin on surface properties and the flotation of molybdenite. Int J Miner Process 1:17–32. https://doi.org/10.1016/0301-7516(74)90024-6

    Article  Google Scholar 

  128. Sedeva IG, Fetzer R, Fornasiero D, Ralston J, Beattie DA (2010) Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements. J Colloid Interface Sci 345:417–426. https://doi.org/10.1016/j.jcis.2010.01.075

    Article  Google Scholar 

  129. Laskowski J, Castro S (2015) Flotation in concentrated electrolyte solutions. Int J Miner Process 144:50–55. https://doi.org/10.1016/j.minpro.2015.09.017

    Article  Google Scholar 

  130. Paulson O, Pugh RJ (1996) Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes. Langmuir 12:4808–4813. https://doi.org/10.1021/la960128n

    Article  Google Scholar 

  131. Preuss M, Butt H-J (1998) Direct measurement of particle−bubble interactions in aqueous electrolyte: dependence on surfactant. Langmuir 14:3164–3174. https://doi.org/10.1021/la971349b

    Article  Google Scholar 

  132. Rath RK, Subramanian S, Laskowski JS (1997) Adsorption of dextrin and guar gum onto talc. A comparative study. Langmuir 13:6260–6266. https://doi.org/10.1021/la970518p

    Article  Google Scholar 

  133. Morris GE, Fornasiero D, Ralston J (2002) Polymer depressants at the talc–water interface: adsorption isotherm, microflotation and electrokinetic studies. Int J Miner Process 67:211–227. https://doi.org/10.1016/S0301-7516(02)00048-0

    Article  Google Scholar 

  134. López Valdivieso A, Celedón Cervantes T, Song S, Robledo Cabrera A, Laskowski JS (2004) Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Miner Eng 17:1001–1006. https://doi.org/10.1016/j.mineng.2004.04.003

    Article  Google Scholar 

  135. Laskowski JS (2012) Anisotropic minerals in flotation circuits. CIM journal 3:203–213

    Google Scholar 

  136. Fuerstenau MC, Lopez-Valdivieso A, Fuerstenau DW (1988) Role of hydrolyzed cations in the natural hydrophobicity of talc. Int J Miner Process 23:161–170. https://doi.org/10.1016/0301-7516(88)90012-9

    Article  Google Scholar 

  137. Burdukova E, Bradshaw DJ, Laskowski JS (2007) Effect of CMC and pH on the rheology of suspensions of isotropic and anisotropic minerals. Can Metall Q 46:273–278. https://doi.org/10.1179/cmq.2007.46.3.273

    Article  Google Scholar 

  138. Drelich J, Long J, Xu Z, Masliyah J, White CL (2006) Probing colloidal forces between a Si3N4 AFM tip and single nanoparticles of silica and alumina. J Colloid Interface Sci 303:627–638. https://doi.org/10.1016/j.jcis.2006.08.007

    Article  Google Scholar 

  139. Gupta V, Miller JD (2010) Surface force measurements at the basal planes of ordered kaolinite particles. J Colloid Interface Sci 344:362–371. https://doi.org/10.1016/j.jcis.2010.01.012

    Article  Google Scholar 

  140. Yan L, Masliyah JH, Xu Z (2013) Understanding suspension rheology of anisotropically-charged platy minerals from direct interaction force measurement using AFM. Curr Opin Colloid Interface Sci 18:149–156. https://doi.org/10.1016/j.cocis.2013.02.008

    Article  Google Scholar 

  141. Yan L, Masliyah JH, Xu Z (2013) Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: muscovite and talc. J Colloid Interface Sci 404:183–191. https://doi.org/10.1016/j.jcis.2013.04.023

    Article  Google Scholar 

  142. Yang D, Xie L, Bobicki E, Xu Z, Liu Q, Zeng H (2014) Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology. Langmuir 30:10809–10817. https://doi.org/10.1021/la5019373

    Article  Google Scholar 

  143. Merve Genc A, Kilickaplan I, Laskowski JS (2012) Effect of pulp rheology on flotation of nickel sulphide ore with fibrous gangue particles. Can Metall Q 51:368–375. https://doi.org/10.1179/1879139512Y.0000000006

    Article  Google Scholar 

  144. Chander S, Wie JM, Fuerstenau DW (1975) On the native flotability and surface properties of naturally hydrophobic solids. AlChE Symp Ser 71:183–188

    Google Scholar 

  145. Lu Z, Liu Q, Xu Z, Zeng H (2015) Probing anisotropic surface properties of molybdenite by direct force measurements. Langmuir 31:11409–11418. https://doi.org/10.1021/acs.langmuir.5b02678

    Article  Google Scholar 

  146. Alagha L, Wang S, Yan L, Xu Z, Masliyah J (2013) Probing adsorption of polyacrylamide-based polymers on anisotropic basal planes of kaolinite using quartz crystal microbalance. Langmuir 29:3989–3998. https://doi.org/10.1021/la304966v

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Xu.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Li, Z. & Liu, Q. Recent Advances in Studying Colloidal Interactions in Mineral Processing. Mining, Metallurgy & Exploration 36, 35–53 (2019). https://doi.org/10.1007/s42461-018-0023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-018-0023-9

Keywords

Navigation