Skip to main content
Log in

Study and Trade-Off Review of New Concepts for Lunar Hydro Analysis

  • Original Paper
  • Published:
Advances in Astronautics Science and Technology Aims and scope Submit manuscript

Abstract

This paper reviews and presents a trade-off study between three new concepts to study the presence of water on the Moon. The concepts are all different concerning the method of application. The first concept confirms the presence of water on the Moon through a comparative ratio study of water formation by hydrogen bombardment at varying intensity. The second concept studied is the Moon Orbiter which confirms the presence of water by studying the spectrum of radio waves from faraway stars over the permanently shadowed regions of the Moon. The third concept is the close site study in which the presence of water is confirmed by heating the surface of the Moon with the help of a reflector array. A trade-off study is conducted between various factors for example feasibility, application location of the experiment on the surface of the Moon, cost-effectiveness, and timeline. These are the basic factors that the concepts are studied on, but the trade-off between other critical factors is also done to select and present the best as well as a feasible method to check the presence of water on the surface of the Moon. Study is conducted to set a base level for standardizations for all future space missions to be conducted in this or any other domain. The efficiency of the mission can be studied through the projections and metrics carried out in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

DHMO:

Dihydrogen monoxide

SAPBA:

Spectrometer analysis using proton beam activation

LIBRA:

Lunar ice detection using bistatic radio antenna

HAUFL:

Hydro analysis using fresnel lens

WMB:

Watson–Murray–Brown

RCP:

Right hand circular polarized wave

LCP:

Left hand circular polarized wave

CPR:

Circular polarization ratio

ppm:

Parts per million

eV:

Electron volt

PSR:

Permanently shaded region

LCRT:

Lunar crater radio telescope

SLS:

Space launch system

ALSD:

Apollo lunar surface drill

SLM:

Selective laser melting

HR:

Hertzsprung–Russell

UHECRν:

Ultrahigh energy cosmic rays and neutrinos

NASA:

National Aeronautics and Space Administration

U :

Activation energy

k :

Boltzmann constant

T :

Surface temperature

D :

Desorption coefficient

References

  1. Hayne PO (2012) New approaches to lunar ice detection and mapping. California Institute of Technology. https://kiss.caltech.edu/final_reports/Lunar_Ice_final_report.pdf. Accessed 25 Mar 2020

  2. Stoker CR (2010) The Scientific Rationale and Technical Approach for drilling on the moon and mars, NASA Ames Research Center, M.S. 245-3, Moffett Field, CA 94035. https://www.lpi.usra.edu/meetings/LEA/whitepapers/Stoker_LSCabs-intemplate.pdf. Accessed 26 Feb 2020

  3. Feldman WC et al (2000) Polar hydrogen deposits on the Moon. J Geophys Res Planets 105(E2):4175–4195. https://doi.org/10.1029/1999JE001129

    Article  Google Scholar 

  4. Saal A, Hauri E, Lo Cascio M, Van Orman J, Rutherford M, Cooper R (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454:192–195. https://doi.org/10.1038/nature07047

    Article  Google Scholar 

  5. Day JMD, Sossi PA, Shearer CK, Moynier F (2019) Volatile distributions in and on the Moon revealed by Cu and Fe isotopes in the “Rusty Rock” 66095. Geochim Cosmochim Acta 266:131–143. https://doi.org/10.1016/j.gca.2019.02.036

    Article  Google Scholar 

  6. Yamamoto S et al (2013) A new type of pyroclastic deposit on the Moon containing Fe-spinel and chromite: visible absorption materials on the moon. Geophys Res Lett 40(17):4549–4554. https://doi.org/10.1002/grl.50784

    Article  Google Scholar 

  7. Yamamoto T (1985) Formation environment of cometary nuclei in the primordial solar nebula. Astron Astrophys 142(1):31–36

    Google Scholar 

  8. Harmon JK, Slade MA, Vélez RA, Crespo A, Dryer MJ, Johnson JM (1994) Radar mapping of Mercury’s polar anomalies. Nature 369:213–215. https://doi.org/10.1038/369213a0

    Article  Google Scholar 

  9. Turkevich A (1973) The average chemical composition of the lunar surface, vol 4, p 1159. https://adsabs.harvard.edu/full/1973LPSC....4.1159T. Accessed 22 Mar 2020

  10. Watson K, Murray B, Brown H (1961) On the possible presence of ice on the moon. J Geophys Res 66(5):1598–1600. https://doi.org/10.1029/JZ066i005p01598

    Article  Google Scholar 

  11. Crider DH, Vondrak RR (2002) Hydrogen migration to the lunar poles by solar wind bombardment of the moon. Adv Space Res 30(8):1869–1874. https://doi.org/10.1016/S0273-1177(02)00493-3

    Article  Google Scholar 

  12. Butler BJ (1997) The migration of volatiles on the surfaces of mercury and the moon. J Geophys Res Planets 102(E8):19283–19291. https://doi.org/10.1029/97JE01347

    Article  Google Scholar 

  13. Tucker OJ, Farrell WM, Killen RM, Hurley DM (2019) Solar wind implantation into the lunar regolith: Monte Carlo simulations of H retention in a surface with defects and the H2 exosphere. J Geophys Res Planets 124(2):278–293. https://doi.org/10.1029/2018JE005805

    Article  Google Scholar 

  14. Starukhina LV (2006) Polar regions of the moon as a potential repository of solar-wind-implanted gases. Adv Space Res 37(1):50–58. https://doi.org/10.1016/j.asr.2005.04.033

    Article  Google Scholar 

  15. Margot JL, Campbell DB, Jurgens RF, Slade MA (1999) Topography of the lunar poles from radar interferometry: a survey of cold trap locations. Science 284(5420):1658–1660. https://doi.org/10.1126/science.284.5420.1658

    Article  Google Scholar 

  16. Anders E (1970) Water on the moon? Science 169(3952):1309–1310. https://doi.org/10.1126/science.169.3952.1309

    Article  Google Scholar 

  17. Nozette S et al (1996) The clementine bistatic radar experiment. Science 274(5292):1495–1498. https://doi.org/10.1126/science.274.5292.1495

    Article  Google Scholar 

  18. Spudis PD et al (2013) Evidence for water ice on the moon: results for anomalous polar craters from the LRO mini-RF imaging radar: evidence for ice on the moon. J Geophys Res Planets 118(10):2016–2029. https://doi.org/10.1002/jgre.20156

    Article  Google Scholar 

  19. Anchordoqui LA, Soriano JF (2019) Evidence for UHECR origin in starburst galaxies, 2019. https://doi.org/10.48550/ARXIV.1905.13243

  20. Bhandari N (2005) Chandrayaan-1: science goals. J Earth Syst Sci 114(6):701–709. https://doi.org/10.1007/BF02715953

    Article  Google Scholar 

  21. Sundararajan V (2006) International missions to the moon: space exploration goals, programs and economics. In: Presented at the space 2006, San Jose, California, September 2006.https://doi.org/10.2514/6.2006-7507

  22. Aminaei A et al (2018) Prospects of probing the radio emission of lunar UHECRv events. Adv Space Res 62(9):2708–2728. https://doi.org/10.1016/j.asr.2018.07.036

    Article  Google Scholar 

  23. Bandyopadhyay S et al (2018) Conceptual ideas for radio telescope on the far side of the moon. In: 2018 IEEE aerospace conference, Big Sky, MT, March 2018, pp 1–10. https://doi.org/10.1109/AERO.2018.8396801

  24. Engelen S, Verhoeven CJM, Bentum MJ (2010) Olfar, a radio telescope based on nano-satellites in moon orbit. In: Small satellite conference, August 2010. https://digitalcommons.usu.edu/smallsat/2010/all2010/20. Accessed 7 Feb 2020

  25. Winter OC, Mourão DC, de Melo CF, Macau EN, Ferreira JL, Carvalho JPS (2009) Controlling the eccentricity of polar lunar orbits with low-thrust propulsion. Math Probl Eng 2009:1–10. https://doi.org/10.1155/2009/159287

    Article  MathSciNet  MATH  Google Scholar 

  26. Zacny K et al (2013) Reaching 1 m deep on mars: the icebreaker drill. Astrobiology 13(12):1166–1198. https://doi.org/10.1089/ast.2013.1038

    Article  Google Scholar 

  27. Wang M, Zhang S, Edwin GNJ (2017) Hydrothermal spallation drilling technology: an alternative method of geothermal energy development. In: Presented at the 2017 2nd international conference on electrical, automation and mechanical engineering (EAME 2017), Shanghai, China, 2017. https://doi.org/10.2991/eame-17.2017.71

  28. Wang M, Wang N (2019) Experimental study of hydrothermal spallation drilling. IOP Conf Ser Mater Sci Eng 472:012046. https://doi.org/10.1088/1757-899X/472/1/012046

    Article  Google Scholar 

  29. Bhardwaj A et al (2015) A new view on the solar wind interaction with the moon. Geosci Lett 2(1):10. https://doi.org/10.1186/s40562-015-0027-y

    Article  Google Scholar 

  30. Protasov CE, Gusarov AV (2017) Modeling the effect of beam shaping at selective laser melting. Procedia IUTAM 23:147–154. https://doi.org/10.1016/j.piutam.2017.06.015

    Article  Google Scholar 

  31. Sales MTBF (2016) Solar powered desalination system using Fresnel lens. IOP Conf Ser Mater Sci Eng 162(1):012002. https://doi.org/10.1088/1757-899X/162/1/012002

    Article  Google Scholar 

  32. O’Neill MJ (2000) Inflatable fresnel lens solar concentrator for space power. US6111190A, Aug. 29, 2000. https://patents.google.com/patent/US6111190A/en. Accessed 25 Mar 2022

  33. O’Neill MJ, Piszczor MF (1997) Inflatable lenses for space photovoltaic concentrator arrays. In: Conference record of the twenty sixth IEEE photovoltaic specialists conference—1997, Anaheim, CA, USA, 1997, pp 853–856https://doi.org/10.1109/PVSC.1997.654221

  34. O’Neill MJ, Piszczor MF (1998) Ultralight inflatable fresnel lens solar concentrators. In: AIP conference Proceedings, Albuquerque, New Mexico (USA), 1998, vol 420, pp 288–293.https://doi.org/10.1063/1.54812

  35. Pino P, Carabellese D, Giuliani M, Marchino L, Nambiar S (2019) Functional and concept trade-off analysis for a mission architecture for moon and Cis-Lunar orbit. In: Presented at the AIAA propulsion and energy 2019 forum, Indianapolis, IN. https://doi.org/10.2514/6.2019-3885

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Palaniappan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaniappan, S., Patial, S., Irani, J. et al. Study and Trade-Off Review of New Concepts for Lunar Hydro Analysis. Adv. Astronaut. Sci. Technol. 5, 103–117 (2022). https://doi.org/10.1007/s42423-022-00109-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42423-022-00109-5

Keywords

Navigation