Skip to main content
Log in

A Review on Acoustic Emissions of Gear Transmissions: Source, Influencing Parameters, Applications and Modeling

  • Review
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

This literature review aims to assess the current state of research concerning the use of acoustic emission (AE) analysis for gear condition monitoring and fault detection. There is a particular focus on wind turbine gearboxes and modeling of AE generated by gear transmissions. It identifies key challenges and opportunities for advancing AE analysis as an effective alternative to traditional vibration analysis.

Methods

The review critically examines a range of experimental studies and application cases from the last decades, including those utilizing different approaches such as envelope spectrum analysis, wavelet transform, empirical mode decomposition, and machine learning. It also analyzes models developed for predicting AE based on the interaction of two simple surfaces in sliding contact.

Results

Findings reveal that AE analysis has seen significant advancements but is largely restricted by its experimental nature. Although several advanced signal processing techniques have been applied, a standard procedure for AE analysis in gear transmissions is yet to be established. Moreover, existing models for predicting AE often overlook factors such as lubrication and surface roughness, affecting their applicability.

Conclusion

The development of an analytical model that predicts AE signatures based on specific gear transmission parameters and potential faults is crucial. This need sets AE apart from vibration analysis, which already boasts numerous dynamic, geometric, and phenomenological models. Addressing this gap is essential to progress AE analysis as a reliable process for condition monitoring and fault detection in gear transmissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qin Z, Wu Y, Lyu S (2018) A review of recent advances in design optimization of gearbox. Int J Precis Eng Manuf 19:1753–1762. https://doi.org/10.1007/s12541-018-0203-z

    Article  Google Scholar 

  2. Mohammed OD, Rantatalo M (2020) Gear fault models and dynamics-based modelling for gear fault detection: a review. Eng Fail Anal 117:104798. https://doi.org/10.1016/j.engfailanal.2020.104798

    Article  Google Scholar 

  3. García Márquez F, Tobias A, Pinar Pérez J, Papaelias M (2012) Condition monitoring of wind turbines: techniques and methods. Renew Energy 46:169–178. https://doi.org/10.1016/j.renene.2012.03.003

    Article  Google Scholar 

  4. Scheu MN, Tremps E, Smolka U, Kolios A, Brennan F (2019) A systematic failure mode effects and criticality analysis for offshore wind turbine systems towards integrated condition based maintenance strategies. Ocean Eng 176:118–133. https://doi.org/10.1016/j.oceaneng.2019.02.048

    Article  Google Scholar 

  5. Vinnem JE, Roed W (2019) Helicopter transportation fatality risk assessment. Springer, London, UK. https://doi.org/10.1007/978-1-4471-7444-8_13

    Book  Google Scholar 

  6. Hameed Z, Ahn S, Cho Y (2010) Practical aspects of a condition monitoring system for a wind turbine with emphasis on its design, system architecture, testing and installation. Renew Energy 35(5):879–894. https://doi.org/10.1016/j.renene.2009.10.031

    Article  Google Scholar 

  7. Tian Z, Jin T, Wu B, Ding F (2011) Condition based maintenance optimization for wind power generation systems under continuous monitoring. Renew Energy 36(5):1502–1509. https://doi.org/10.1016/j.renene.2010.10.028

    Article  Google Scholar 

  8. Wang T, Han Q, Chu F, Feng Z (2019) Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review. Mech Syst Signal Process 126:662–685. https://doi.org/10.1016/j.ymssp.2019.02.051

    Article  Google Scholar 

  9. Zonta T, Costa CA, Righi RR, Lima MJ, Trindade ES, Li G (2020) Predictive maintenance in the industry 4.0: a systematic literature review. Comput Ind Eng 150:106889. https://doi.org/10.1016/j.cie.2020.106889

    Article  Google Scholar 

  10. Garg N, Sharma O, Kumar A, Schiefer MI (2012) A novel approach for realization of primary vibration calibration standard by homodyne laser interferometer in frequency range of 0.1 hz to 20 khz. Measurement 45(8):1941–1950. https://doi.org/10.1016/j.measurement.2012.04.011

    Article  Google Scholar 

  11. Mongia C, Goyal D, Sehgal S (2022) Vibration response-based condition monitoring and fault diagnosis of rotary machinery. Mater Today: Proc 50(5):679–683. https://doi.org/10.1016/j.matpr.2021.04.395

    Article  Google Scholar 

  12. Kumar A, Gandhi CP, Zhou Y, Kumar R, Xiang J (2020) Latest developments in gear defect diagnosis and prognosis: a review. Measurement 158:107735. https://doi.org/10.1016/j.measurement.2020.107735

    Article  Google Scholar 

  13. Kim Y, Tan ACC, Kosse V (2008) Condition monitoring of low-speed bearings: a review. Aust J Mech Eng 6(1):61–68. https://doi.org/10.1080/14484846.2008.11464558

    Article  Google Scholar 

  14. Antoni J, Griffaton J, André H, Valencia LD, Bonnardot F, Morales OC, Dominguez GC, Daga AP, Leclere Q, Vicuña CM, Acuña DQ, Ompsunggu AP, Alonso EF (2017) Feedback on the surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine. Mech Syst Signal Process 97:112–144. https://doi.org/10.1016/j.ymssp.2017.01.037

    Article  Google Scholar 

  15. Carrasco A, Mendez F, Leaman F, Vicuña CM (2021) Short review of the use of acoustic emissions for detection and monitoring of cracks. Acoust Aust 49:273–280. https://doi.org/10.1007/s40857-021-00219-4

    Article  Google Scholar 

  16. Caesarendra W, Kosasih B, Tieu AK, Zhu H, Moodie CA, Zhu Q (2016) Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing. Mech Syst Signal Process 72–73:134–159. https://doi.org/10.1016/j.ymssp.2015.10.020

    Article  Google Scholar 

  17. Al-Obaidi SMA, Leong MS, Hamzah RIR, Abdelrhman AM (2012) A review of acoustic emission technique for machinery condition monitoring: defects detection & diagnostic. Appl Mech Mater 229–231:1476–1480. https://doi.org/10.4028/www.scientific.net/amm.229-231.1476

    Article  Google Scholar 

  18. Patil AV, Kumar B, Barjibhe RB (2016) An extensive review on the use of acoustic emission technique for continuous monitoring. Int Res J Eng Technol 3(5):137–140

    Google Scholar 

  19. Leaman F, Vicuña C, Clausen E (2021) A review of gear fault diagnosis of planetary gearboxes using acoustic emissions. Acoust Aust 49:265–272. https://doi.org/10.1007/s40857-021-00217-6

    Article  Google Scholar 

  20. Hellier C (2003) Handbook of Nondestructive Evaluation. McGraw-Hill, New York, USA

    Google Scholar 

  21. International Organization for Standardization (2001) Non-destructive Testing - Acoustic Emission Inspection - Vocabulary (ISO 12716:2001). Retrieved from https://www.iso.org/standard/34090.html

  22. Deutsches Institut für Normung (2017) Zerstörungsfreie Prüfung - Terminologie - Teil 9: Begriffe der Schallemissionsprüfung (DIN 1330-9:2017). Retrieved from: https://www.din.de/de/mitwirken/normenausschuesse/nmp/veroeffentlichungen/wdc-beuth:din21:267061913 (in German)

  23. Bernet C (2018) Ein beitrag zur analyse von schallemissionssignalen. PhD thesis, RWTH Aachen University

  24. Tan C, Mba D (2005) Identification of the acoustic emission source during a comparative study on diagnosis of a spur gearbox. Tribol Int 38(5):469–480. https://doi.org/10.1016/j.triboint.2004.10.007

    Article  Google Scholar 

  25. Tan C, Mba D (2005) Correlation between acoustic emission activity and asperity contact during meshing of spur gears under partial elastohydrodynamic lubrication. Tribol Lett 20(1):63–67. https://doi.org/10.1007/s11249-005-7793-1

    Article  Google Scholar 

  26. Tan C, Mba D (2005) Experimentally established correlation between acoustic emission activity, load, speed, and asperity contact of spur gears under partial elastohydrodynamic lubrication. Proc Inst Mech Eng, Part J: J Eng Tribol 219(6):401–409. https://doi.org/10.1243/135065005X34099

    Article  Google Scholar 

  27. Novoa AB, Vicuña CM (2016) New aspects concerning the generation of acoustic emissions in spur gears, the influence of operating conditions and gear defects in planetary gearboxes. Insight Non-Destr Test Cond Monit 58(1):18–27. https://doi.org/10.1784/insi.2016.58.1.18

    Article  Google Scholar 

  28. Caso E, Fernandez-del-Rincon A, Garcia P, Diez-Ibarbia A, Sanchez-Espiga J (2023) An experimental study of acoustic emissions from active surface degradation in planetary gears. Mech Syst Signal Process 189:110090. https://doi.org/10.1016/j.ymssp.2022.110090

    Article  Google Scholar 

  29. Loutas TH, Sotiriades G, Kalaitzoglou I, Kostopoulos V (2009) Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements. Appl Acoust 70(9):1148–1159. https://doi.org/10.1016/j.apacoust.2009.04.007

    Article  Google Scholar 

  30. Leaman F (2020) Contributions to the diagnosis and prognosis of ring gear faults of planetary gearboxes using acoustic emissions. PhD thesis, RWTH Aachen University . https://doi.org/10.18154/RWTH-2020-07453

  31. Toutountzakis T, Tan CK, Mba D (2005) Application of acoustic emission to seeded gear fault detection. NDT & E Int 38(1):27–36. https://doi.org/10.1016/j.ndteint.2004.06.008

    Article  Google Scholar 

  32. Dornfeld D, Handy C (1987) Slip detection using acoustic emission signal analysis. In: IEEE International Conference on Robotics and Automation, Raleigh, NC, USA. https://doi.org/10.1109/ROBOT.1987.1087812

  33. Hamzah RR, Mba D (2009) The influence of operating condition on acoustic emission (ae) generation during meshing of helical and spur gear. Tribol Int 42(1):3–14. https://doi.org/10.1016/j.triboint.2008.06.003

    Article  Google Scholar 

  34. Szeri A (1998) Fluid film lubrication. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511782022

    Book  Google Scholar 

  35. Vicuña CM (2014) Effects of operating conditions on the acoustic emissions (ae) from planetary gearboxes. Appl Acoust 77:150–158. https://doi.org/10.1016/j.apacoust.2013.04.017

    Article  Google Scholar 

  36. Vicuña CM (2009) Contributions to the analysis of vibrations and acoustic emissions for the condition monitoring of epicyclic gearboxes. PhD thesis, RWTH Aachen University

  37. Tan C, Irving P, Mba D (2007) A comparative experimental study on the diagnostic and prognostic capabilities of acoustic emission, vibration and spectrometric oil analysis for spur gears. Mech Syst Signal Process 21(1):208–233. https://doi.org/10.1016/j.ymssp.2005.09.015

    Article  Google Scholar 

  38. Eftekharnejad B, Mba D (2009) Seeded fault detection on helical gears with acoustic emission. Appl Acoust 70(4):547–555. https://doi.org/10.1016/j.apacoust.2008.07.006

    Article  Google Scholar 

  39. Qu Y, He D, Yoon J, Van Hecke B, Bechhoefer E, Zhu J (2014) Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors: a comparative study. Sensors 14(1):1372–1393. https://doi.org/10.3390/s140101372

    Article  Google Scholar 

  40. Leaman F, Baltes R, Clausen E (2021) Comparative case studies on ring gear fault diagnosis of planetary gearboxes using vibrations and acoustic emissions. Forsch Ing 85:619–628. https://doi.org/10.1007/s10010-021-00451-4

    Article  Google Scholar 

  41. Liu L, Chen L, Wang Z, Liu D (2020) Early fault detection of planetary gearbox based on acoustic emission and improved variational mode decomposition. IEEE Sens J 21(2):1735–1745. https://doi.org/10.1109/JSEN.2020.3015884

    Article  Google Scholar 

  42. Petkov N, Wu H, Powell R (2020) Cost-benefit analysis of condition monitoring on demo remote maintenance system. Fusion Eng Des 160:112022. https://doi.org/10.1016/j.fusengdes.2020.112022

    Article  Google Scholar 

  43. Soto-Ocampo CR, Mera JM, Cano-Moreno JD, Garcia-Bernardo JL (2020) Low-cost, high-frequency, data acquisition system for condition monitoring of rotating machinery through vibration analysis-case study. Sensors 20(12):3493. https://doi.org/10.3390/s20123493

    Article  Google Scholar 

  44. Gu H, Liu WY, Gao QW, Zhang Y (2021) A review on wind turbines gearbox fault diagnosis methods. J Vibroeng 23(1):26–43. https://doi.org/10.21595/jve.2020.20178

    Article  Google Scholar 

  45. Qu Y, Bechhoefer E, He D, Zhu J (2013) A new acoustic emission sensor based gear fault detection approach. Int J Progn Health Manag 11:1–14. https://doi.org/10.36001/ijphm.2013.v4i3.2141

    Article  Google Scholar 

  46. Vicuña C, Höweler C (2017) A method for reduction of acoustic emission (ae) data with application in machine failure detection and diagnosis. Mech Syst Signal Process 97:44–58. https://doi.org/10.1016/j.ymssp.2017.04.040

    Article  Google Scholar 

  47. Leaman F, Vicuña C, Clausen E (2023) Experimental investigation of crack detection in ring gears of wind turbine gearboxes using acoustic emissions. J Vib Eng Technol. https://doi.org/10.1007/s42417-023-00970-0

    Article  Google Scholar 

  48. He D, Li R, Bechhoefer E (2010) Split torque type gearbox fault detection using acoustic emission and vibration sensors. In: International Conference on Networking, Sensing and Control, Chicago, IL, USA. https://doi.org/10.1109/ICNSC.2010.5461545

  49. Khazaee M, Ahmadi H, Omid M, Banakar A, Moosavian A (2013) Feature-level fusion based on wavelet transform and artificial neural network for fault diagnosis of planetary gearbox using acoustic and vibration signals. Insight Non-Destr Test Cond Monit 55(6):323–330. https://doi.org/10.1784/insi.2012.55.6.323

    Article  Google Scholar 

  50. Li X, Li J, Qu Y, He D (2019) Gear pitting fault diagnosis using integrated cnn and gru network with both vibration and acoustic emission signals. Appl Sci 9(4):768. https://doi.org/10.3390/app9040768

    Article  Google Scholar 

  51. Medina R, Cerrada M, Cabrera D, Sánchez R.-V, Li C, Oliveira J.V.D (2019) Deep learning-based gear pitting severity assessment using acoustic emission, vibration and currents signals. In: 2019 Prognostics and System Health Management Conference (PHM-Paris), pp 210–216 . https://doi.org/10.1109/PHM-Paris.2019.00042

  52. Yoon J, He D (2015) Planetary gearbox fault diagnostic method using acoustic emission sensors. IET Sci, Meas Technol 9(8):936–944. https://doi.org/10.1049/iet-smt.2014.0375

    Article  Google Scholar 

  53. Li R, Seçkiner S, He D, Bechhoefer E, Menon P (2012) Gear fault location detection for split torque gearbox using ae sensors. IEEE Trans Syst Man Cybern, Part C: Appl Rev 42(6):1308–1317. https://doi.org/10.1109/TSMCC.2011.2182609

    Article  Google Scholar 

  54. Zhang Y, Lu W, Chu F (2017) Planet gear fault localization for wind turbine gearbox using acoustic emission signals. Renew Energy 109:449–460. https://doi.org/10.1016/j.renene.2017.03.035

    Article  Google Scholar 

  55. Baranov V, Kudryavtsev E, Sarychev G, Schavelin V (2007) Acoustic emission in friction. Elsevier, Oxford, UK

    Google Scholar 

  56. Feng P, Borghesani P, Smith WA, Peng Z (2020) Model-based surface roughness estimation using acoustic emission signals. Tribol Int 144:106101. https://doi.org/10.1016/j.triboint.2019.106101

    Article  Google Scholar 

  57. Fan Y, Gu F, Ball A (2010) Modelling acoustic emissions generated by sliding friction. Wear 5–6:811–815. https://doi.org/10.1016/j.wear.2009.12.010

    Article  Google Scholar 

  58. Archard JF (1957) Elastic deformation and the laws of friction. Proc R Soc Lond Ser A 243:190–205

    Article  Google Scholar 

  59. Bowden FP, Tabor D (1950) Friction and lbrication of solids. Oxford University Press, Oxford, UK

    Google Scholar 

  60. Hao Q, Shen Y, Wang Y, Zhang X (2019) A fractal model of acoustic emission signals in sliding friction. Tribol Lett 67:31. https://doi.org/10.1007/s11249-019-1147-x

    Article  Google Scholar 

  61. Mandelbrot BB (1982) The Fractal Geometry of Nature. W. H. Freeman and Company, San Francisco, USA

    Google Scholar 

  62. Sharma RB, Parey A, Tandon N (2017) Modelling of acoustic emission generated in involute spur gear pair. J Sound Vib 393:353–373. https://doi.org/10.1016/j.jsv.2017.01.010

    Article  Google Scholar 

  63. Sharma RB, Parey A (2017) Modelling of acoustic emission generated by crack propagation in spur gear. Eng Fract Mech 182:215–228. https://doi.org/10.1016/j.engfracmech.2017.07.030

    Article  Google Scholar 

  64. Sentoku H, Tokuda T (1995) Ae in bending fatigue process of carburizing spur gears. Trans Japan Soc Mech Eng Part C 61(582):417–421 ((in Japanese))

    Article  Google Scholar 

  65. Sharma RB, Parey A (2018) Modelling of acoustic emission generated due to pitting on spur gear. Eng Fail Anal 86:1–20. https://doi.org/10.1016/j.engfailanal.2017.12.016

    Article  Google Scholar 

  66. Borghesani P, Smith WA, Zhang X, Feng P, Antoni J, Peng Z (2018) A new statistical model for acoustic emission signals generated from sliding contact in machine elements. Tribol Int 127:412–419. https://doi.org/10.1016/j.triboint.2018.06.032

    Article  Google Scholar 

  67. Feng P, Borghesani P, Chang H, Smith WA, Randall RB, Peng Z (2019) Monitoring gear surface degradation using cyclostationarity of acoustic emission. Mech Syst Signal Process 131:199–221. https://doi.org/10.1016/j.ymssp.2019.05.055

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the funding from the Chilean Agency of Research and Development under the project "FONDECYT Iniciación 11230222”.

Funding

Agencia Nacional de Investigación y Desarrollo (11230222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Leaman.

Ethics declarations

Conflict of Interest

The author declares no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leaman, F. A Review on Acoustic Emissions of Gear Transmissions: Source, Influencing Parameters, Applications and Modeling. J. Vib. Eng. Technol. (2024). https://doi.org/10.1007/s42417-024-01330-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42417-024-01330-2

Keywords

Navigation