Skip to main content
Log in

Experimental and Computational Techniques of Free In-Plane Vibration of a Fixed Support Curved Beam with a Single Crack

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The present research paper focuses on the free in-plane vibrational analysis of a curved cracked cantilever beam using experimental and computational methods with reuse of aluminum scrape.

Method

The equation of motion governing free in-plane vibration of a curved cantilever beam with a single crack is solved numerically via DQEM (Differential Quadrature Element Method). Additionally, the fundamental frequencies and mode shape are investigated at various curvatures and depths of the curved cracked beam.

Results

The results are compared to the experimental model and finite element method to confirm the correctness of the suggested method of calculating its natural frequencies and mode shapes.

Conclusion

This study shows that the boundary conditions of the beam affect how a curved beam behaves concerning the mode transition event. The present method can also predict the impact of damage severity and location on a curved beam’s natural frequencies and mode shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zahedinejad P (2016) Free vibration of functionally graded beam resting on elastic foundation in thermal environment. Int J Stab Dyn 16(07):1550029

    Article  MathSciNet  Google Scholar 

  2. Akbas SD (2018) Forced vibration analysis of functionally graded porous deep beam. Compos Struct 186:293–302

    Article  Google Scholar 

  3. Zhang Y, Wei S, Hongwei M, Wenhao J, Hui M (2023) Semi-analytical modeling and vibration analysis for U-shape, Z-shape and regular spatial pipelines supported by multiple clamps. Eur J Mech A/Solids 97:104979

    Article  Google Scholar 

  4. Srilakshmi R, Ramji M, Viswanath C (2015) Fatigue crack growth study of CFRP patch repaired Al 2014–T6 panel having an inclined center crack using FEA and DIC. Eng Fract Mech 134:182–201

    Article  Google Scholar 

  5. Asad H, Ali N, Haris AK, Zahid M, Faroq A (2021) Failure analsysis of a cracked cylinder block of an aircraft brake system. Eng Fail Anal 133:105948

    Google Scholar 

  6. Dallago M, Benedeth M, Ancellottis S, Fontanari V (2016) The role of lubrication fluid pressurization and entrapment on the path of inclined edge originated under rolling-sliding contact fatigue: numerical analyses vs. experimental evidences. Int J Fatigue 92(2):517–530

    Article  Google Scholar 

  7. Sadeghi F, Jalalahmadi B, Slack TS, Arakere NK (2009) A Review of rolling contact fatigue. J Tribol 131(4):1–15

    Article  Google Scholar 

  8. Anderson KL (2005) Fracture mechanics fundamentals and applications, 3rd edn. Taylor and Francis, Milton Park

    Book  Google Scholar 

  9. Ricci R, Paolo P (2012) Discussion of the dynamic stability of a multi-degree-of-freedom rotor system affected by a transverse crack. Mech Mach Theory 58:82–100

    Article  Google Scholar 

  10. Peter W, Beaumot R (2020) The structural integrity of composites materials and long-life implantation and boundary condition. Appl Compos Mater 27:449–478

    Article  Google Scholar 

  11. Mehmet A (2014) Free vibration analysis of beams considering different geometric characteristics and boundary conditions. Int J Mech Appl 4(3):94–100

    Google Scholar 

  12. Palash D, Talukdar S (2016) Model characteristics of cracked thin walled unsymmetrical cross-sectional beams curved in plan. Thin Walled Struct 108:75–92

    Article  Google Scholar 

  13. Dimarogonas DA (1996) A state of the art review. Eng Fract Mech 55(5):831–857

    Article  Google Scholar 

  14. Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR (2003) A review of structural health monitoring literature:1996–2001(Report). Los Alamos National Laboratory, New Mexico

  15. Salawu OS (1997) Detection of structural damage through changes in frequency: a review. Eng Struct 19(9):718–723

    Article  Google Scholar 

  16. Karaagac C, Ozturk H, Sabuncu M (2011) Crack effects on the in-plane static and dynamic stabilities of a curved beam with an edge crack. J Sound Vib 330(8):1718–1736

    Article  ADS  Google Scholar 

  17. Raveendranath P, Singh G, Rao GV (2001) A three-noded shear-flexible curved beam element based on coupled displacement field interpolations. Int J Numer Meth Eng 51:85–101

    Article  Google Scholar 

  18. Tanenni T, Farid B, Bensaid B, Sufiane A (2021) Experiemntal and nonlinear finite analysis of shear behavior of reinforced concrete beams. Structures 29:1582–1596

    Article  Google Scholar 

  19. Kumar DS, Mahapatra DR, Gopalakrishnan S (2004) A spectral finite element for wave propagation and structural diagnostic analysis of composite beam with transverse crack. Finite Elem Anal Des 40(13–14):1729–1751

    Article  Google Scholar 

  20. Jin HK, Seung JK, Wie DK (1995) A finite element analysis of damage propagation during metal forming process. Eng Fract Mech 51(6):915–931

    Article  Google Scholar 

  21. Konrad R, Kazimierz F (2019) Numerical analysis of crack development of timber glass composites I-beams in the extended finite element. Compos Struct 209:349–361

    Article  Google Scholar 

  22. Jaglekar DM, Mitra M (2015) Analysis of nonlinear frequency mixing in 1D wavelength with a breaking crack using the spectral finite element method. Smart Mater Struct 24:11

    Google Scholar 

  23. Jaglekar DM, Mitra M (2016) Analysis of flexural wave propagation beam with a breath crack using wavelet spectral finite element method. Mech Syst Sig Process 76–77:576–591

    Article  ADS  Google Scholar 

  24. Agrawal AK, Chakraborty G (2021) Dynamics of cracked cantilever beam subjected to a moving point force using discrete element method. J Vib Eng Technol 9:803–815

    Article  Google Scholar 

  25. Orhan S (2007) Analysis of free and force vibration of a cracked cantilever beam. NDT E Int 40(60):443–450

    Article  CAS  Google Scholar 

  26. Owolabi G, Swamidas A (2003) Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. J Sound Vib 265(1):1–22

    Article  ADS  Google Scholar 

  27. Devdatt P, Subrata K, Saikat RM, Lokeswar P, Sunil K, Sudip D (2022) Vibration analysis of cracked cantilever beam using response surface methodology. J Vib Eng Technol

  28. Oz H, Daş M (2006) In-plane vibrations of circular curved beams with a transverse open crack. Math Comput Appl 11(1):1–10

    Google Scholar 

  29. Agarwalla DK, Parhi DR (2013) Effect of crack on modal parameters of a cantilever beam subjected to vibration. Proc Eng 51:665–669

    Article  Google Scholar 

  30. Ahmet CA, Fatih YO (2017) Volkan structural identification of a cantilever beam with multiple crack: modeling and validation. Int J Mech Sci 2017(130):74–89

    Google Scholar 

  31. Chen CN (2005) In plane vibration of non-prismatic curved beam structure consideration curved beam structure the effect of shear deformation solved by DQEM. In: Proceeding of PVP, pressure vessels and piping division conference, pp 17–21

  32. Knon YW, Priest EM, Gordis JH (2013) Investigation of vibrational characteristics of composites beams with fluid structure interaction. Compos Struct 105:269–278

    Article  Google Scholar 

  33. Mamta K, Varum J (2021) Numerical approximation of 1D and 2D non-linear Schrödinger equations by implementing modified cubic Hyperbolic B-spline based DQM. Partial Differ Equ Appl Math 4:100076

    Article  Google Scholar 

  34. Bashan A, Karakoc SBG, Geyikli T (2015) Approximatation of the KdVB equation by the quantic B-spline differential quadrature method. Nevsehir Universities. 42:2

  35. Nikkhoo A, Hassan K, Hossein C, Raham Z (2012) Application of differential quadrature method to investigate dynamics of a curved beam structure acted upon by a moving concentrated load. Indian J Sci Technol 5(8):1–5

    Article  Google Scholar 

  36. Torabi K, Afshari H, Haji AT (2014) A DQEM for transverse vibration analysis of multiple cracked nonuniform Timoshenko beams with general boundary conditions. Comput Math Appl 67:527–541

    Article  MathSciNet  Google Scholar 

  37. Zhong H (2001) Triangular differential quadrature and its application to elastostatic analysis of Reissner plates. Int J Solids Struct 38:2821–2832

    Article  Google Scholar 

  38. Allemang RJ (2003) the model assurance criterion—twenty years of use and abuse. Sound Vib 37(8):14–23

    Google Scholar 

  39. Yu L, Li C (2014) A global artificial fish swarm algorithm for structural damage detection. Adv Struct Eng 17(3):331–346

    Article  Google Scholar 

  40. Hunt DL (1992) Application of an enhanced coordinate modal assurance criterion. In: Proc. of the 10th international modal analysis conference, pp 66–71

  41. Kerti I, Toptan F (2008) Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs). Mater Lett 62:1215–1218

    Article  CAS  Google Scholar 

  42. Toptan F, Kilicarslan A, Cigdem M, Kerti I (2010) Processing and micro structural characterization of AA1070 and AA6063 matrix B4C reinforced composites. Mater Des 31:87–91

    Article  Google Scholar 

  43. Issa MS, Wang TM, Hsiao BT (1987) extensional vibrational of continuous circular curved beam with rotary inertia and shear deformation. J Sound Vib 114:297–308

    Article  ADS  Google Scholar 

  44. Zare M (2018) Free in-plane vibration of cracked curved beams: experimental, analytical, and numerical analyses. J Mech Eng Sci 1–19

  45. Tarnoposkaya T, Hoog FRD, Fletcher NH (1999) Low frequency mode transition in the free in-plain vibration of curved beam. J Sound Vib 228:69–90

    Article  ADS  Google Scholar 

  46. ANSYS mechanical APDL basic analysis guide (2016) ANSYS Inc.

  47. ANSYS mechanical APDL fracture analysis guide (2016) ANSYS Inc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Ravichandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Differential quadrature element method

Differential equations are solve using a novel numerical method known as the DQEM. The DQEM is based on the DQ approach, which sums the values of the variables functions at all of the chosen accuracy points in the extraction axis to estimate the formulation of partial differential function at a position within the domain.

$$\frac{df}{dX}_{X={X}_{i}}=\sum_{j=1}^{N}{C}_{ij}^{(n)}{f}_{i} i,j=\mathrm{1,2},\mathrm{3,4}\dots \dots ..N$$

Equation X converts the physical coordinate to the natural coordinate.

$$\theta =\left(1-x\right){\theta }_{1}+x{\theta }_{N}$$

where \({\theta }_{1}\) and \({\theta }_{N}\) are the element’s first and Nth nodes angular coordinates. Keep in mind that any numbers between 0 and 1 are included in the values of \(x\) (\(0<X<1\)).

Equation can be employed to apply this relation to obtain the differentiation with reference to \(\theta\) (62).

Calculating the DQ weighting coefficients and choosing the precision points are two important stages in the DQ approach, as shown by Eq. (62). The weighted coefficients were calculated using Lagrangian functions, and the precision point was chosen using the Gauss-Lobatto Chebyshev polynomial.

Appendix 2

The element of [N], [J], [L], [R] and [V] as follows

$$\left[ N \right] = \left[ {\begin{array}{*{20}c} {m_{1} } & {m_{2} } & {m_{3} } & {m_{4} } & {m_{5} } & {m_{6} } \\ {m_{{1e^{{l_{1} \alpha }} }} } & {m_{{2e^{{l_{2} \alpha }} }} } & {m_{{3e^{{l_{3} \alpha }} }} } & {m_{{4e^{{l_{4} \alpha }} }} } & {m_{{5e^{{l_{5} \alpha }} }} } & {m_{{6e^{{l_{6} \alpha }} }} } \\ {n_{31} } & {n_{32} } & {n_{33} } & {n_{34} } & {n_{35} } & {n_{36} } \\ {n_{41} } & {n_{42} } & {n_{43} } & {n_{44} } & {n_{45} } & {n_{46} } \\ {n_{51} } & {n_{52} } & {n_{53} } & {n_{54} } & {n_{55} } & {n_{56} } \\ {n_{61} } & {n_{62} } & {n_{63} } & {n_{64} } & {n_{65} } & {n_{66} } \\ \end{array} } \right]$$
$${a}_{31}={u}_{1}\mathrm{sin}\aleph -\mathrm{cos}\aleph$$
$${n}_{32}={u}_{2}\mathrm{sin}\aleph -\mathrm{cos}\aleph$$
$${n}_{33}={u}_{3}\mathrm{sin}\aleph -\mathrm{cos}\aleph$$
$${n}_{34}={u}_{4}\mathrm{sin}\aleph -\mathrm{cos}\aleph$$
$${n}_{35}={u}_{5}\mathrm{sin}\aleph -\mathrm{cos}\aleph$$
$${n}_{36}={u}_{6}\mathrm{sin}\aleph -\mathrm{cos}\aleph$$
$${n}_{41}=\left({u}_{1}\mathrm{sin}\varepsilon -\mathrm{cos}\varepsilon \right){e}^{{l}_{1}\alpha }$$
$${n}_{42}=\left({u}_{2}\mathrm{sin}\varepsilon -\mathrm{cos}\varepsilon \right){e}^{{l}_{2}\alpha }$$
$${n}_{43}=\left({u}_{3}\mathrm{sin}\varepsilon -\mathrm{cos}\varepsilon \right){e}^{{l}_{3}\alpha }$$
$${n}_{44}=\left({u}_{4}\mathrm{sin}\varepsilon -\mathrm{cos}\varepsilon \right){e}^{{l}_{4}\alpha }$$
$${n}_{45}=\left({u}_{5}\mathrm{sin}\varepsilon -\mathrm{cos}\eta \right){e}^{{l}_{5}\alpha }$$
$${n}_{46}=\left({u}_{6}\mathrm{sin}\eta -\mathrm{cos}\eta \right){e}^{{l}_{6}\alpha }$$
$${n}_{51}={u}_{1}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${n}_{52}={u}_{2}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${n}_{53}={u}_{3}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${n}_{54}={u}_{4}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${n}_{55}={u}_{5}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${n}_{56}={u}_{6}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${n}_{61}=\left(-{u}_{1}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{1}\alpha }$$
$${n}_{62}=\left(-{u}_{2}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{2}\alpha }$$
$${n}_{63}=\left(-{u}_{3}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{3}\alpha }$$
$${n}_{64}=\left(-{u}_{4}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{4}\alpha }$$
$${n}_{65}=\left(-{u}_{5}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{5}\alpha }$$
$${n}_{66}=\left(-{u}_{6}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{6}\alpha }$$
$$\left[J\right]=\left[\begin{array}{ccc}{-m}_{1}{l}_{1}& {-m}_{2}{l}_{2}& \begin{array}{ccc}{-m}_{3}{l}_{3}& {-m}_{4}{l}_{4}& \begin{array}{cc}{-m}_{5}{l}_{5}& {-m}_{6}{l}_{6}\end{array}\end{array}\\ {{l}_{1}m}_{1{e}^{{l}_{1}\alpha }}& {{l}_{1}m}_{2{e}^{{l}_{2}\alpha }}& {l}_{1}\begin{array}{ccc}{m}_{3{e}^{{l}_{3}\alpha }}& {{l}_{1}m}_{4{e}^{{l}_{4}\alpha }}& \begin{array}{cc}{{l}_{1}m}_{5{e}^{{l}_{5}\alpha }}& {{l}_{1}m}_{6{e}^{{l}_{6}\alpha }}\end{array}\end{array}\\ \begin{array}{c}{j}_{31}\\ {j}_{41}\\ \begin{array}{c}{j}_{51}\\ {j}_{61}\end{array}\end{array}& \begin{array}{c}{j}_{32}\\ {j}_{42}\\ \begin{array}{c}{j}_{52}\\ {j}_{62}\end{array}\end{array}& \begin{array}{c}\begin{array}{ccc}{j}_{33}& {j}_{34}& \begin{array}{cc}{j}_{35}& {j}_{36}\end{array}\end{array}\\ \begin{array}{ccc}{j}_{43}& {j}_{44}& \begin{array}{cc}{j}_{45}& {j}_{46}\end{array}\end{array}\\ \begin{array}{c}\begin{array}{ccc}{j}_{53}& {j}_{54}& \begin{array}{cc}{j}_{55}& {j}_{56}\end{array}\end{array}\\ \begin{array}{ccc}{j}_{63}& {j}_{64}& \begin{array}{cc}{j}_{65}& {j}_{66}\end{array}\end{array}\end{array}\end{array}\end{array}\right]$$
$${p}_{31}={q}_{1}\mathrm{sin}\delta +{t}_{1}\mathrm{cos}\delta$$
$${p}_{32}={q}_{2}\mathrm{sin}\delta +{t}_{2}\mathrm{cos}\delta$$
$${p}_{33}={q}_{3}\mathrm{sin}\delta +{t}_{3}\mathrm{cos}\delta$$
$${p}_{34}={q}_{4}\mathrm{sin}\delta +{t}_{4}\mathrm{cos}\delta$$
$${p}_{35}={q}_{5}\mathrm{sin}\delta +{t}_{5}\mathrm{cos}\delta$$
$${p}_{36}={q}_{1}\mathrm{sin}\delta +{t}_{6}\mathrm{cos}\delta$$
$${p}_{41}=\left({q}_{1}\mathrm{sin}\eta -{t}_{1}\mathrm{cos}\eta \right){e}^{{l}_{1}\alpha }$$
$${p}_{42}=\left({q}_{2}\mathrm{sin}\eta -{t}_{2}\mathrm{cos}\eta \right){e}^{{l}_{2}\alpha }$$
$${p}_{43}=\left({q}_{3}\mathrm{sin}\eta -{t}_{3}\mathrm{cos}\eta \right){e}^{{l}_{3}\alpha }$$
$${p}_{44}=\left({q}_{4}\mathrm{sin}\eta -{t}_{4}\mathrm{cos}\eta \right){e}^{{l}_{4}\alpha }$$
$${p}_{45}=\left({q}_{5}\mathrm{sin}\eta -{t}_{5}\mathrm{cos}\eta \right){e}^{{l}_{5}\alpha }$$
$${p}_{46}=\left({q}_{6}\mathrm{sin}\eta -{t}_{6}\mathrm{cos}\eta \right){e}^{{l}_{6}\alpha }$$
$${p}_{51}={-q}_{1}\mathrm{cos}\delta +{t}_{1}\mathrm{sin}\delta$$
$${p}_{52}={-q}_{2}\mathrm{cos}\delta +{t}_{2}\mathrm{sin}\delta$$
$${p}_{53}={-q}_{3}\mathrm{cos}\delta +{t}_{3}\mathrm{sin}\delta$$
$${p}_{54}={-q}_{4}\mathrm{cos}\delta +{t}_{4}\mathrm{sin}\delta$$
$${p}_{55}={-q}_{5}\mathrm{cos}\delta +{t}_{5}\mathrm{sin}\delta$$
$${p}_{56}={-q}_{6}\mathrm{cos}\delta +{t}_{6}\mathrm{sin}\delta$$
$${p}_{61}=\left(-{q}_{1}\mathrm{cos}\eta +{t}_{1}\mathrm{sin}\eta \right){e}^{{l}_{1}\alpha }$$
$${p}_{62}=\left(-{q}_{2}\mathrm{cos}\eta +{t}_{2}\mathrm{sin}\eta \right){e}^{{l}_{2}\alpha }$$
$${p}_{63}=\left(-{q}_{3}\mathrm{cos}\eta +{t}_{3}\mathrm{sin}\eta \right){e}^{{l}_{3}\alpha }$$
$${p}_{64}=\left(-{q}_{4}\mathrm{cos}\eta +{t}_{4}\mathrm{sin}\eta \right){e}^{{l}_{4}\alpha }$$
$${p}_{65}=\left(-{q}_{5}\mathrm{cos}\eta +{t}_{5}\mathrm{sin}\eta \right){e}^{{l}_{5}\alpha }$$
$${p}_{66}=\left(-{q}_{6}\mathrm{cos}\eta +{t}_{6}\mathrm{sin}\eta \right){e}^{{l}_{6}\alpha }$$
$$[C] = \left[\begin{array}{*{20}{c}} {{c_{1,1}}}&{{c_{1,2}}}&{{c_{1,3}}}&{{c_{1,4}}}&{{c_{1,5}}}&{{c_{1,6}}}&0&0&0&0&0&0\\ 0&0&0&0&0&0&{{c_{2,7}}}&{{c_{2,8}}}&{{c_{2,9}}}&{{c_{2,10}}}&{{c_{2,11}}}&{{c_{2,12}}}\\ {{c_{3,1}}}&{{c_{3,2}}}&{{c_{3,3}}}&{{c_{3,4}}}&{{c_{3,5}}}&{{c_{3,6}}}&0&0&0&0&0&0\\ 0&0&0&0&0&0&{{c_{4,7}}}&{{c_{4,8}}}&{{c_{4,9}}}&{{c_{4,10}}}&{{c_{4,11}}}&{{c_{4,12}}}\\ {{c_{5,1}}}&{{c_{5,2}}}&{{c_{5,3}}}&{{c_{5,4}}}&{{c_{5,5}}}&{{c_{5,6}}}&0&0&0&0&0&0\\ 0&0&0&0&0&0&{{c_{6,7}}}&{{c_{6,8}}}&{{c_{6,9}}}&{{c_{6,10}}}&{{c_{6,11}}}&{{c_{6,12}}}\\ {{c_{7,1}}}&{{c_{7,2}}}&{{c_{7,3}}}&{{c_{7,4}}}&{{c_{7,5}}}&{{c_{7,6}}}&{ - 1}&{ - 1}&{ - 1}&{ - 1}&{ - 1}&{ - 1}\\ {{c_{8,1}}}&{{c_{8,2}}}&{{c_{8,3}}}&{{c_{8,4}}}&{{c_{8,5}}}&{{c_{8,6}}}&{{c_{8,7}}}&{{c_{8,8}}}&{{c_{8,9}}}&{{c_{8,10}}}&{{c_{8,11}}}&{{c_{8,12}}}\\ {{c_{9,1}}}&{{c_{9,2}}}&{{c_{9,3}}}&{{c_{9,4}}}&{{c_{9,5}}}&{{c_{9,6}}}&{{c_{9,7}}}&{{c_{9,8}}}&{{c_{9,9}}}&{{c_{9,10}}}&{{c_{9,11}}}&{{c_{9,12}}}\\ {{c_{10,1}}}&{{c_{10,2}}}&{{c_{10,3}}}&{{c_{10,4}}}&{{c_{10,5}}}&{{c_{10,6}}}&{{c_{10,7}}}&{{c_{10,8}}}&{{c_{10,9}}}&{{c_{10,10}}}&{{c_{10,11}}}&{{c_{10,12}}}\\ {{c_{11,1}}}&{{c_{11,2}}}&{{c_{11,3}}}&{{c_{11,4}}}&{{c_{11,5}}}&{{c_{11,6}}}&{{c_{11,7}}}&{{c_{11,8}}}&{{c_{11,9}}}&{{c_{11,10}}}&{{c_{11,11}}}&{{c_{11,12}}}\\ {{c_{12,1}}}&{{c_{12,2}}}&{{c_{12,3}}}&{{c_{12,4}}}&{{c_{12,5}}}&{{c_{12,6}}}&{{c_{12,7}}}&{{c_{12,8}}}&{{c_{12,9}}}&{{c_{12,10}}}&{{c_{12,11}}}&{{c_{12,12}}} \end{array}\right]$$
$${c}_{\mathrm{1,1}}={m}_{1}$$
$${c}_{\mathrm{1,2}}={m}_{1}$$
$${c}_{\mathrm{1,3}}={m}_{1}$$
$${c}_{\mathrm{1,4}}={m}_{1}$$
$${c}_{\mathrm{1,5}}={m}_{1}$$
$${c}_{\mathrm{1,6}}={m}_{1}$$
$${c}_{\mathrm{2,7}}={m}_{1{e}^{{l}_{1}\alpha }}$$
$${c}_{\mathrm{2,8}}={m}_{1{e}^{{l}_{2}\alpha }}$$
$${c}_{\mathrm{2,9}}={m}_{3{e}^{{l}_{3}\alpha }}$$
$${c}_{\mathrm{2,10}}={m}_{3{e}^{{l}_{4}\alpha }}$$
$${c}_{\mathrm{2,11}}={m}_{5{e}^{{l}_{5}\alpha }}$$
$${c}_{\mathrm{2,12}}={m}_{5{e}^{{l}_{6}\alpha }}$$
$${c}_{\mathrm{3,1}}={u}_{1}\mathrm{sin}\delta -\mathrm{cos}\delta$$
$${c}_{\mathrm{3,2}}={u}_{2}\mathrm{sin}\delta -\mathrm{cos}\delta$$
$${c}_{\mathrm{3,3}}={u}_{3}\mathrm{sin}\delta -\mathrm{cos}\delta$$
$${c}_{\mathrm{3,4}}={u}_{4}\mathrm{sin}\delta -\mathrm{cos}\delta$$
$${c}_{\mathrm{3,5}}={u}_{5}\mathrm{sin}\delta -\mathrm{cos}\delta$$
$${c}_{\mathrm{3,6}}={u}_{6}\mathrm{sin}\delta -\mathrm{cos}\delta$$
$${c}_{\mathrm{4,1}}=\left({u}_{1}\mathrm{sin}\eta +\mathrm{cos}\eta \right){e}^{{l}_{1}\alpha }$$
$${c}_{\mathrm{4,2}}=\left({u}_{2}\mathrm{sin}\eta +\mathrm{cos}\eta \right){e}^{{l}_{2}\alpha }$$
$${c}_{\mathrm{4,3}}=\left({u}_{3}\mathrm{sin}\eta +\mathrm{cos}\eta \right){e}^{{l}_{3}\alpha }$$
$${c}_{\mathrm{4,4}}=\left({u}_{4}\mathrm{sin}\eta +\mathrm{cos}\eta \right){e}^{{l}_{4}\alpha }$$
$${c}_{\mathrm{4,5}}=\left({u}_{5}\mathrm{sin}\eta +\mathrm{cos}\eta \right){e}^{{l}_{5}\alpha }$$
$${c}_{\mathrm{4,6}}=\left({u}_{6}\mathrm{sin}\eta +\mathrm{cos}\eta \right){e}^{{l}_{6}\alpha }$$
$${c}_{\mathrm{5,1}}={u}_{1}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${c}_{\mathrm{5,2}}={u}_{2}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${c}_{\mathrm{5,3}}={u}_{3}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${c}_{\mathrm{5,4}}={u}_{4}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${c}_{\mathrm{5,5}}={u}_{5}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${c}_{\mathrm{5,6}}={u}_{6}\mathrm{cos}\delta +\mathrm{sin}\delta$$
$${c}_{\mathrm{6,1}}=\left({-u}_{1}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{1}\alpha }$$
$${c}_{\mathrm{6,2}}=\left({-u}_{2}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{2}\alpha }$$
$${c}_{\mathrm{6,3}}=\left({-u}_{3}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{3}\alpha }$$
$${c}_{\mathrm{6,4}}=\left({-u}_{4}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{4}\alpha }$$
$$c=\left({-u}_{5}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{5}\alpha }$$
$${c}_{\mathrm{6,6}}=\left({-u}_{6}\mathrm{cos}\eta +\mathrm{sin}\eta \right){e}^{{l}_{6}\alpha }$$
$${c}_{\mathrm{7,1}}={e}^{{l}_{1}\beta }$$
$${c}_{\mathrm{7,2}}={e}^{{l}_{2}\beta }$$
$${c}_{\mathrm{7,3}}={e}^{{l}_{3}\beta }$$
$${c}_{\mathrm{7,4}}={e}^{{l}_{4}\beta }$$
$${c}_{\mathrm{7,5}}={e}^{{l}_{5}\beta }$$
$${zc}_{\mathrm{7,6}}={e}^{{l}_{6}\beta }$$
$${c}_{\mathrm{8,1}}={{u}_{1}e}^{{l}_{1}\beta }$$
$${c}_{\mathrm{8,2}}={{u}_{2}e}^{{l}_{2}\beta }$$
$${c}_{\mathrm{8,3}}={{u}_{3}e}^{{l}_{3}\beta }$$
$${c}_{\mathrm{8,4}}={{u}_{4}e}^{{l}_{4}\beta }$$
$${c}_{\mathrm{8,5}}={{u}_{5}e}^{{l}_{5}\beta }$$
$${c}_{\mathrm{8,6}}={{u}_{6}e}^{{l}_{6}\beta }$$
$${c}_{\mathrm{8,7}}=-{u}_{1}$$
$${c}_{\mathrm{8,8}}=-{u}_{2}$$
$${c}_{\mathrm{8,9}}=-{u}_{3}$$
$${c}_{\mathrm{8,10}}=-{u}_{4}$$
$${c}_{\mathrm{8,11}}=-{u}_{5}$$
$${c}_{\mathrm{8,12}}=-{u}_{6}$$
$${c}_{\mathrm{9,1}}=-\frac{{m}_{1}{e}^{{l}_{1}\beta }}{R}-\frac{EI{R}^{2}{l}_{1}{m}_{1}{e}^{{l}_{1}\beta }}{K}$$
$${c}_{\mathrm{9,2}}=-\frac{{m}_{2}{e}^{{l}_{2}\beta }}{R}-\frac{EI{R}^{2}{l}_{2}{m}_{2}{e}^{{l}_{2}\beta }}{K}$$
$${c}_{\mathrm{9,3}}=-\frac{{m}_{3}{e}^{{l}_{3}\beta }}{R}-\frac{EI{R}^{2}{l}_{3}{m}_{3}{e}^{{l}_{3}\beta }}{K}$$
$${c}_{\mathrm{9,4}}=-\frac{{m}_{4}{e}^{{l}_{4}\beta }}{R}-\frac{EI{R}^{2}{l}_{4}{m}_{4}{e}^{{l}_{4}\beta }}{K}$$
$${c}_{\mathrm{9,5}}=-\frac{{m}_{5}{e}^{{l}_{5}\beta }}{R}-\frac{EI{R}^{2}{l}_{5}{m}_{5}{e}^{{l}_{5}\beta }}{K}$$
$${c}_{\mathrm{9,6}}=-\frac{{m}_{6}{e}^{{l}_{2}\beta }}{R}-\frac{EI{R}^{2}{l}_{6}{m}_{6}{e}^{{l}_{6}\beta }}{K}$$
$${c}_{\mathrm{9,7}}=\frac{{m}_{1}}{R}$$
$${c}_{\mathrm{9,8}}=\frac{{m}_{2}}{R}$$
$${c}_{\mathrm{9,9}}=\frac{{m}_{3}}{R}$$
$${c}_{\mathrm{9,10}}=\frac{{m}_{4}}{R}$$
$${c}_{\mathrm{9,11}}=\frac{{m}_{5}}{R}$$
$${c}_{\mathrm{9,12}}=\frac{{m}_{6}}{R}$$
$${c}_{\mathrm{10,1}}=-\frac{EI}{{R}^{3}}{{t}_{1}e}^{{l}_{1}\beta }$$
$${c}_{\mathrm{10,2}}=-\frac{EI}{{R}^{3}}{{t}_{2}e}^{{l}_{2}\beta }$$
$${c}_{\mathrm{10,3}}=-\frac{EI}{{R}^{3}}{{t}_{3}e}^{{l}_{3}\beta }$$
$${c}_{\mathrm{10,4}}=-\frac{EI}{{R}^{3}}{{t}_{4}e}^{{l}_{4}\beta }$$
$${c}_{\mathrm{10,5}}=-\frac{EI}{{R}^{3}}{{t}_{5}e}^{{l}_{5}\beta }$$
$${c}_{\mathrm{10,6}}=-\frac{EI}{{R}^{3}}{{t}_{6}e}^{{l}_{6}\beta }$$
$${c}_{\mathrm{10,7}}=-\frac{EI}{{R}^{3}}{t}_{1}$$
$${c}_{\mathrm{10,8}}=-\frac{EI}{{R}^{3}}{t}_{2}$$
$${c}_{\mathrm{10,9}}=-\frac{EI}{{R}^{3}}{t}_{3}$$
$${c}_{\mathrm{10,10}}=-\frac{EI}{{R}^{3}}{t}_{4}$$
$${c}_{\mathrm{10,11}}=-\frac{EI}{{R}^{3}}{t}_{5}$$
$${c}_{\mathrm{10,12}}=-\frac{EI}{{R}^{3}}{t}_{6}$$
$${c}_{\mathrm{11,1}}=-\frac{EI}{{R}^{3}}{{q}_{1}e}^{{l}_{1}\beta }$$
$${c}_{\mathrm{11,2}}=-\frac{EI}{{R}^{3}}{{q}_{2}e}^{{l}_{2}\beta }$$
$${c}_{\mathrm{11,3}}=-\frac{EI}{{R}^{3}}{{q}_{3}e}^{{l}_{3}\beta }$$
$${c}_{\mathrm{11,4}}=-\frac{EI}{{R}^{3}}{{q}_{4}e}^{{l}_{4}\beta }$$
$${c}_{\mathrm{11,5}}=-\frac{EI}{{R}^{3}}{{q}_{5}e}^{{l}_{5}\beta }$$
$${c}_{\mathrm{11,6}}=-\frac{EI}{{R}^{3}}{{q}_{1}e}^{{l}_{6}\beta }$$
$${c}_{\mathrm{11,7}}=-\frac{EI}{{R}^{3}}{{q}_{7}e}^{{l}_{7}\beta }$$
$${c}_{\mathrm{11,8}}=-\frac{EI}{{R}^{3}}{{q}_{8}e}^{{l}_{8}\beta }$$
$${c}_{\mathrm{11,9}}=-\frac{EI}{{R}^{3}}{{q}_{9}e}^{{l}_{9}\beta }$$
$${c}_{\mathrm{11,10}}=-\frac{EI}{{R}^{3}}{{q}_{10}e}^{{l}_{10}\beta }$$
$${c}_{\mathrm{11,11}}=-\frac{EI}{{R}^{3}}{{q}_{11}e}^{{l}_{11}\beta }$$
$${c}_{\mathrm{11,12}}=-\frac{EI}{{R}^{3}}{{q}_{12}e}^{{l}_{12}\beta }$$
$${c}_{\mathrm{12,1}}=-\frac{EI}{{R}^{2}}{{q}_{1}{m}_{1}e}^{{l}_{1}\beta }$$
$${c}_{\mathrm{12,2}}=-\frac{EI}{{R}^{2}}{{q}_{2}{m}_{2}e}^{{l}_{2}\beta }$$
$${c}_{\mathrm{12,3}}=-\frac{EI}{{R}^{2}}{{q}_{3}{m}_{3}e}^{{l}_{3}\beta }$$
$${c}_{\mathrm{12,4}}=-\frac{EI}{{R}^{2}}{{q}_{4}{m}_{4}e}^{{l}_{4}\beta }$$
$${c}_{\mathrm{12,5}}=-\frac{EI}{{R}^{2}}{{q}_{5}{m}_{5}e}^{{l}_{5}\beta }$$
$${c}_{\mathrm{12,6}}=-\frac{EI}{{R}^{2}}{{q}_{6}{m}_{6}e}^{{l}_{6}\beta }$$
$${c}_{\mathrm{12,7}}=-\frac{EI}{{R}^{2}}{q}_{1}{m}_{1}$$
$${c}_{\mathrm{12,8}}=-\frac{EI}{{R}^{2}}{q}_{2}{m}_{2}$$
$${c}_{\mathrm{12,9}}=-\frac{EI}{{R}^{2}}{q}_{3}{m}_{3}$$
$${c}_{\mathrm{12,10}}=-\frac{EI}{{R}^{2}}{q}_{4}{m}_{4}$$
$${c}_{\mathrm{12,11}}=-\frac{EI}{{R}^{2}}{q}_{5}{m}_{5}$$
$${c}_{\mathrm{12,12}}=-\frac{EI}{{R}^{2}}{q}_{6}{m}_{6}$$
$$\left[R\right]=\left[\begin{array}{c}\begin{array}{c}{S}_{0}(\mathrm{1,1}:12)\\ {S}_{0}(\mathrm{8,1}:12)\end{array}\\ \begin{array}{ccc}\begin{array}{cc}\begin{array}{c}{\left[O\right]}_{1x3}\\ {\left[O\right]}_{1x5}\end{array}& \begin{array}{c}1\\ 1\end{array}\end{array}& \begin{array}{c}{\left[O\right]}_{1x4}\\ {\left[O\right]}_{1x4}\end{array}& \begin{array}{cc}\begin{array}{c}-1\\ -1\end{array}& \begin{array}{c}{\left[O\right]}_{1x3}\\ {\left[O\right]}_{1x1}\end{array}\end{array}\end{array}\\ \begin{array}{c}{S}_{0}\left(\mathrm{4,1}:12\right)-{S}_{0}(\mathrm{9,1}:12)\\ \begin{array}{c}{S}_{0}\left(\mathrm{6,1}:12\right)-{S}_{0}(\mathrm{11,1}:12)\\ \begin{array}{c}{S}_{0}\left(\mathrm{2,1}:12\right)+{S}_{0}(\mathrm{7,1}:12)\\ {g}_{\mathrm{8,1} }{g}_{\mathrm{8,2} {g}_{\mathrm{8,3}: }{g}_{\mathrm{8,6} {g}_{\mathrm{8,7}:12}}}\end{array}\end{array}\end{array}\end{array}\right]$$
$${g}_{\mathrm{8,1}}=R{S}_{0}(\mathrm{2,1})$$
$${g}_{\mathrm{8,2}}=R{S}_{0}\left(\mathrm{2,1}\right)+\frac{K}{R}$$
$${g}_{\mathrm{8,3}:5}=R{S}_{0}(\mathrm{2,3}:6)$$
$${g}_{\mathrm{8,6}}=R{S}_{0}(\mathrm{2,7})+\frac{K}{R}$$
$${g}_{\mathrm{8,7}:12}=R{S}_{0}(\mathrm{2,8}:12)$$
$$\left[ V \right] = \left[\begin{array}{*{20}{c}} {{v_{1,1}}}&{{v_{1,2}}}&{{v_{1,3}}}&{{v_{1,4}}}&{{v_{1,5}}}&{{v_{1,6}}}&0&0&0&0&0&0\\ {{v_{2,1}}}&{{v_{2,2}}}&{{v_{2,3}}}&{{v_{2,4}}}&{{v_{2,5}}}&{{v_{2,6}}}&0&0&0&0&0&0\\ {{v_{3,1}}}&{{v_{3,2}}}&{{v_{3,3}}}&{{v_{3,4}}}&{{v_{3,5}}}&{{v_{3,6}}}&0&0&0&0&0&0\\ 0&0&0&0&0&0&{{v_{4,7}}}&{{v_{4,8}}}&{{v_{4,9}}}&{{v_{4,10}}}&{{v_{4,11}}}&{{v_{4,12}}}\\ 0&0&0&0&0&0&{{v_{5,7}}}&{{v_{5,8}}}&{{v_{5,9}}}&{{v_{5,10}}}&{{v_{5,11}}}&{{v_{5,12}}}\\ 0&0&0&0&0&0&{{v_{6,7}}}&{{v_{6,8}}}&{{v_{6,9}}}&{{v_{6,10}}}&{{v_{6,11}}}&{{v_{6,12}}}\\ {{v_{7,1}}}&{{v_{7,2}}}&{{v_{7,3}}}&{{v_{7,4}}}&{{v_{7,5}}}&{{v_{7,6}}}&{{v_{7,7}}}&{{v_{7,8}}}&{{v_{7,9}}}&{{v_{7,10}}}&{{v_{7,11}}}&{{v_{7,12}}}\\ {{v_{8,1}}}&{{v_{8,2}}}&{{v_{8,3}}}&{{v_{8,4}}}&{{v_{8,5}}}&{{v_{8,6}}}&{{v_{8,7}}}&{{v_{8,8}}}&{{v_{8,9}}}&{{v_{8,10}}}&{{v_{8,11}}}&{{v_{9,12}}}\\ {{v_{9,1}}}&{{v_{9,2}}}&{{v_{9,3}}}&{{v_{9,4}}}&{{v_{9,5}}}&{{v_{9,6}}}&{{v_{9,7}}}&{{v_{9,8}}}&{{v_{9,9}}}&{{v_{10,10}}}&{{v_{11,11}}}&{{v_{12,12}}}\\ {{v_{10,1}}}&{{v_{10,2}}}&{{v_{10,3}}}&{{v_{10,4}}}&{{v_{10,5}}}&{{v_{10,6}}}&{{v_{10,7}}}&{{v_{10,8}}}&{{v_{10,9}}}&{{v_{10,10}}}&{{v_{10,11}}}&{{v_{10,12}}}\\ {{v_{11,1}}}&{{v_{11,2}}}&{{v_{11,3}}}&{{v_{11,4}}}&{{v_{11,5}}}&{{v_{11,6}}}&{{v_{11,7}}}&{{v_{11,8}}}&{{v_{11,9}}}&{{v_{11,10}}}&{{v_{11,11}}}&{{v_{11,12}}}\\ {{v_{12,1}}}&{{v_{12,2}}}&{{v_{12,3}}}&{{v_{12,4}}}&{{v_{12,5}}}&{{v_{12,6}}}&{{v_{12,7}}}&{{v_{12,8}}}&{{v_{12,9}}}&{{v_{12,10}}}&{{v_{12,11}}}&{{v_{12,12}}} \end{array}\right]$$

The seventh through twelfth row \(\left[S\right]\) and \(\left[Z\right]\) are the same and other element of \(\left[S\right]\) are considered as follows

$${s}_{\mathrm{1,1}}=-{m}_{1}{l}_{1}$$
$${s}_{\mathrm{1,2}}=-{m}_{2}{l}_{2}$$
$${s}_{\mathrm{1,3}}=-{m}_{3}{l}_{3}$$
$${s}_{\mathrm{1,4}}=-{m}_{4}{l}_{4}$$
$${s}_{\mathrm{1,5}}=-{m}_{5}{l}_{5}$$
$${s}_{\mathrm{1,6}}=-{m}_{1}{l}_{6}$$
$${s}_{\mathrm{2,1}}={q}_{1}\mathrm{sin}\rho +{t}_{1}\mathrm{cos}\rho$$
$${s}_{\mathrm{2,2}}={q}_{2}\mathrm{sin}\rho +{t}_{2}\mathrm{cos}\rho$$
$${s}_{\mathrm{2,3}}={q}_{3}\mathrm{sin}\rho +{t}_{3}\mathrm{cos}\rho$$
$${s}_{\mathrm{2,4}}={q}_{4}\mathrm{sin}\rho +{t}_{4}\mathrm{cos}\rho$$
$${s}_{\mathrm{2,5}}={q}_{5}\mathrm{sin}\rho +{t}_{5}\mathrm{cos}\rho$$
$${s}_{\mathrm{2,6}}={q}_{6}\mathrm{sin}\rho +{t}_{6}\mathrm{cos}\rho$$
$${s}_{\mathrm{3,1}}={q}_{1}\mathrm{cos}\rho +{t}_{1}\mathrm{sin}\rho$$
$${s}_{\mathrm{3,2}}={q}_{2}\mathrm{cos}\rho +{t}_{2}\mathrm{sin}\rho$$
$${s}_{\mathrm{3,3}}={q}_{3}\mathrm{cos}\rho +{t}_{3}\mathrm{sin}\rho$$
$${s}_{\mathrm{3,4}}={q}_{4}\mathrm{cos}\rho +{t}_{4}\mathrm{sin}\rho$$
$${s}_{\mathrm{3,5}}={q}_{5}\mathrm{cos}\rho +{t}_{5}\mathrm{sin}\rho$$
$${s}_{\mathrm{3,6}}={q}_{6}\mathrm{cos}\rho +{t}_{6}\mathrm{sin}\rho$$
$${s}_{\mathrm{4,7}}=-{{l}_{1}{m}_{1}e}^{{l}_{1}\alpha }$$
$${s}_{\mathrm{4,2}}=-{{l}_{2}{m}_{2}e}^{{l}_{2}\alpha }$$
$${s}_{\mathrm{4,9}}=-{{l}_{3}{m}_{3}e}^{{l}_{3}\alpha }$$
$${s}_{\mathrm{4,4}}=-{{l}_{4}{m}_{4}e}^{{l}_{4}\alpha }$$
$${s}_{\mathrm{4,11}}=-{{l}_{5}{m}_{5}e}^{{l}_{5}\alpha }$$
$${s}_{\mathrm{4,6}}=-{{l}_{6}{m}_{6}e}^{{l}_{6}\alpha }$$
$${s}_{\mathrm{5,7}}=\left({q}_{1}\mathrm{sin}\eta -{t}_{1}\mathrm{cos}\eta \right){e}^{{l}_{1}\alpha }$$
$${s}_{\mathrm{5,2}}=\left({q}_{2}\mathrm{sin}\eta -{t}_{2}\mathrm{cos}\eta \right){e}^{{l}_{2}\alpha }$$
$${s}_{\mathrm{5,9}}=\left({q}_{3}\mathrm{sin}\eta -{t}_{3}\mathrm{cos}\eta \right){e}^{{l}_{3}\alpha }$$
$${s}_{\mathrm{5,4}}=\left({q}_{4}\mathrm{sin}\eta -{t}_{4}\mathrm{cos}\eta \right){e}^{{l}_{4}\alpha }$$
$${s}_{\mathrm{5,11}}=\left({q}_{5}\mathrm{sin}\eta -{t}_{5}\mathrm{cos}\eta \right){e}^{{l}_{5}\alpha }$$
$${s}_{\mathrm{5,6}}=\left({q}_{6}\mathrm{sin}\eta -{t}_{6}\mathrm{cos}\eta \right){e}^{{l}_{6}\alpha }$$
$${s}_{\mathrm{6,7}}=\left({q}_{1}\mathrm{cos}\eta +{t}_{1}\mathrm{sin}\eta \right){e}^{{l}_{1}\alpha }$$
$${s}_{\mathrm{6,2}}=\left({q}_{2}\mathrm{cos}\eta +{t}_{2}\mathrm{sin}\eta \right){e}^{{l}_{2}\alpha }$$
$${s}_{\mathrm{6,9}}=\left({q}_{3}\mathrm{cos}\eta +{t}_{3}\mathrm{sin}\eta \right){e}^{{l}_{3}\alpha }$$
$${s}_{\mathrm{6,4}}=\left({q}_{4}\mathrm{cos}\eta +{t}_{4}\mathrm{sin}\eta \right){e}^{{l}_{4}\alpha }$$
$${s}_{\mathrm{6,11}}=\left({q}_{5}\mathrm{cos}\eta +{t}_{5}\mathrm{sin}\eta \right){e}^{{l}_{5}\alpha }$$
$${s}_{\mathrm{6,6}}=\left({q}_{6}\mathrm{cos}\eta +{t}_{6}\mathrm{sin}\eta \right){e}^{{l}_{6}\alpha }$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, A., Mohanty, P.K. Experimental and Computational Techniques of Free In-Plane Vibration of a Fixed Support Curved Beam with a Single Crack. J. Vib. Eng. Technol. 12, 2517–2540 (2024). https://doi.org/10.1007/s42417-023-00997-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-00997-3

Keywords

Navigation