Skip to main content

Advertisement

Log in

Finite Element Investigation of Offshore Wind Turbines Natural Frequency with Monopile Foundations System

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

The estimation of the natural frequency is a key step in the design of an offshore wind turbine (OWT). In the literature, the natural frequency can be evaluated through two steps, the first one is the estimation of the fixed base natural frequency using formulas from the literature, and the second one is the estimation of the foundation system effect. These formulas are efficient for simple shapes of OWTs but become hard to use for recent OWTs.

Method

The finite element method and the Fourier series have been used to develop a computer code under the name of “TurbiSoft” to compute the natural frequency of the OWT with the foundation system. Each of the linear, the quadratic volume elements, and the joint element was employed in TurbiSoft to model the whole system to examine the influence of the element type, the soil profile, and the interaction soil–pile state on the natural frequency.

Results

The outcomes of TurbiSoft for several OWTs were compared with the measured frequencies to define the range error of each parameter. The results show that the quadratic elements are more suitable for the natural frequency calculation. Also, this study demonstrates that the natural frequency value is strongly related to the interaction soil–pile state, and is slightly affected by the soil profile variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\({f}_{\mathrm{FB}}\) :

Fixed base natural frequency

\({f}_{\mathrm{n}}\) :

Natural frequency of tower/monopile/soil

\({f}_{RB(tapered)}\) :

Natural frequency of wind turbines with linearly tapered towers

\({\mathrm{k}}_{0}\) :

Earth pressure coefficient at rest

\({m}_{T}^{^{\prime}}\) :

Global masse

\({m}_{T(trapered)}\) :

Mass of the tapered tower

\({m}_{RNA}\) :

Total mass of the Rotor nacelle assembly

\(\left[m\right]\) :

Elementary mass matrices

\({t}_{p}\) :

Monopile wall thickness

\({t}_{s}\) :

Substructure wall thickness

\({t}_{T}\) :

Tower wall thickness

w:

Angular frequency

\(\left[B\right]\) :

Strain–displacement matrix

\({\mathrm{C}}_{\mathrm{L}}\) and \({\mathrm{C}}_{\mathrm{R}}\) :

Foundation flexibility coefficients

Dtop:

Tower top diameter

Dbottom :

Tower bottom diameter

\({\mathrm{D}}_{\mathrm{r}}\) :

Sand relative density

\({D}_{p}\) :

Monopile diameter

\(\left[D\right]\) :

Material property matrix

\({D}_{pile}\) :

Monopile diameter

\({E}_{T}{I}_{T}\) :

Flexural rigidity

\({E}_{s}\) :

Soil modulus

\({E}_{sD}\) :

Soil modulus at z depth equal to monopile diameter

\({E}_{T}\) :

Tower material Young’s modulus

\(\left[\mathrm{K}\right]\) :

Stiffness matrix

\({\left[\mathrm{K}\right]}_{\mathrm{int}}\) :

Joint element stiffness matrix

\({\left[\mathrm{K}\right]}_{\mathrm{i}}^{\mathrm{n}}\) :

Stiffness matrix of an element I associated with n harmonic

\({\mathrm{K}}_{\mathrm{L}}\) :

Lateral stiffness

\({\mathrm{K}}_{\mathrm{LR}}\) :

Cross-coupling stiffness

\({K}_{n}\) :

Interface normal stiffness

\({\mathrm{K}}_{\mathrm{R}}\) :

Rotational stiffness

\({K}_{s}\) :

Interface shear stiffness

\({\mathrm{K}}_{T(tapered)}\) :

Lateral stiffness of a tapered tower

L:

Tower height

\({L}_{p}\) :

Monopile embedded length

\({L}_{s}\) :

Substructure height

\({L}_{T}\) :

Tower height

\(\left[M\right]\) :

Global mass matrices

\({\mathrm{N}}_{\mathrm{b}}\) :

Number of the blades

\({\mathrm{N}}_{\mathrm{i}}\) :

Shape function associated with node I

\({\left[\mathrm{N}\right]}^{\mathrm{n}}\) :

Shape function matrix associated with n harmonic

RNA:

Rotor nacelle assembly

\({\eta }_{L}\), \({\eta }_{R}\),\({\eta }_{LR}\) :

Non-dimensional foundation stiffness parameters

ϒ :

Soil density

\(\nu\) :

Poisson’s ratio

\({\upsigma }_{\mathrm{v}0}\) :

Vertical stress due to the overburden

References

  1. Joyce Lee, Feng Zhao (2022) Global wind report 2022. Belgium

  2. Jan van der Tempel (2006) Design of Support Structures for Offshore Wind Turbines. Delft University of Technology

  3. van der Tempel J, Molenaar D-P (2002) Wind turbine structural dynamics – a review of the principles for modern power generation, onshore and offshore. Wind Eng 26:211–222. https://doi.org/10.1260/030952402321039412

    Article  Google Scholar 

  4. JH Vught (2000) Considerations on the dynamics of support structures for an offshore wind energy converters. Delft University of Technology

  5. Btevh RD (2001) Formulas for frequencies and mode shapes. Krteger Publtshing Company, Malabar, Florida, USA

    Google Scholar 

  6. Ko Y-Y (2020) A simplified structural model for monopile-supported offshore wind turbines with tapered towers. Renew Energy 156:777–790. https://doi.org/10.1016/j.renene.2020.03.149

    Article  Google Scholar 

  7. You Y-S, Song K-Y, Sun M-Y (2022) Variable natural frequency damper for minimizing response of offshore wind turbine: principle verification through analysis of controllable natural frequencies. J Mar Sci Eng 10:983. https://doi.org/10.3390/jmse10070983

    Article  ADS  Google Scholar 

  8. Arany L, Bhattacharya S, Adhikari S et al (2015) An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models. Soil Dyn Earthq Eng 74:40–45. https://doi.org/10.1016/j.soildyn.2015.03.007

    Article  Google Scholar 

  9. Arany L, Bhattacharya S, Macdonald JHG, Hogan SJ (2016) Closed form solution of eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI. Soil Dyn Earthq Eng 83:18–32. https://doi.org/10.1016/j.soildyn.2015.12.011

    Article  Google Scholar 

  10. Negm HM, Maalawi KY (2000) Structural design optimization of wind turbine towers. Comput Struct 74:649–666. https://doi.org/10.1016/S0045-7949(99)00079-6

    Article  Google Scholar 

  11. Xu Y, Nikitas G, Zhang T et al (2020) Support condition monitoring of offshore wind turbines using model updating techniques. Struct Health Monit 19:1017–1031. https://doi.org/10.1177/1475921719875628

    Article  Google Scholar 

  12. Alkhoury P, Soubra A, Rey V, Aït-Ahmed M (2021) A full three-dimensional model for the estimation of the natural frequencies of an offshore wind turbine in sand. Wind Energy 24:699–719. https://doi.org/10.1002/we.2598

    Article  ADS  Google Scholar 

  13. Shi S, Zhai E, Xu C et al (2022) Influence of pile-soil interaction on dynamic properties and response of offshore wind turbine with monopile foundation in sand site. Appl Ocean Res 126:103279. https://doi.org/10.1016/j.apor.2022.103279

    Article  Google Scholar 

  14. DNV (2014) Offshore standard DNV-OS-J101, design of offshore wind turbine structures. Høvik, Norway

    Google Scholar 

  15. Kaiser HF (1972) The JK method: a procedure for finding the eigenvectors and eigenvalues of a real symmetric matrix. Comput J 15:271–273. https://doi.org/10.1093/comjnl/15.3.271

    Article  MathSciNet  Google Scholar 

  16. Dj. Amar Bouzid, R. Bakhti, S. Bhattacharya (2018) The dynamics of an offshore wind turbine using a FE semi-analytical analysis considering the interaction with three soil profiles. In: Proceedings of the 9th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2018), June 25–27, 2018, Porto, Portugal. Porto, Portugal

  17. Durocher LL, Gasper A, Rhoades G (1978) A numerical comparison of axisymmetric finite elements. Int J Numer Methods Eng 12:1415–1427. https://doi.org/10.1002/nme.1620120910

    Article  Google Scholar 

  18. Deshpande SS, Rawat SR, Bandewar NP, Soman MY (2016) Consistent and lumped mass matrices in dynamics and their impact on finite element analysis results. Int J Mech Eng Technol (IJMET) 7:135–147

    Google Scholar 

  19. Robert D.Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt (2002) Concepts and applications of finite element analysis, 4th ed. University of Wisconsin – Madison

  20. O. C. Zienkiewicz, E. L. Taylor (2000) The finite element method, Fifth. Butterworth-Heinemann, Oxford

  21. Chan HC, Cai CW, Cheung YK (1993) Convergence studies of dynamic analysis by using the finite element method with lumped mass matrix. J Sound Vib 165:193–207. https://doi.org/10.1006/jsvi.1993.1253

    Article  ADS  Google Scholar 

  22. Felippa CA, Guo Q, Park KC (2015) Mass matrix templates: general description and 1D examples. Arch Comput Methods Eng 22:1–65. https://doi.org/10.1007/s11831-014-9108-x

    Article  MathSciNet  Google Scholar 

  23. Hinton E, Rock T, Zienkiewicz OC (1976) A note on mass lumping and related processes in the finite element method. Earthq Eng Struct Dyn 4:245–249. https://doi.org/10.1002/eqe.4290040305

    Article  Google Scholar 

  24. Smith IM, Griffiths DV, Margetts L (2014) Programming the Finite Element Method, 5th edn. John Wiley & Sons Ltd, United Kingdom

    Google Scholar 

  25. Mackie RI (1992) Object oriented programming of the finite element method. Int J Numer Methods Eng 35:425–436. https://doi.org/10.1002/nme.1620350212

    Article  Google Scholar 

  26. Forde BWR, Foschi RO, Stiemer SF (1990) Object-oriented finite element analysis. Comput Struct 34:355–374. https://doi.org/10.1016/0045-7949(90)90261-Y

    Article  Google Scholar 

  27. Dahl O-J, Nygaard K (1966) SIMULA: an ALGOL-based simulation language. Commun ACM 9:671–678. https://doi.org/10.1145/365813.365819

    Article  Google Scholar 

  28. S. Kay, MV. Kraan (2000) Geotechnical data analysis-stage 1, offshore wind turbines at exposed sites, north sea. Fugro Engineers BV

  29. Zaaijer MB (2002) Design methods for offshore wind turbines at exposed sites (OWTES)—sensitivity analysis for foundations of offshore wind turbines. Delft, The Netherlands

    Google Scholar 

  30. MB. Zaaijer (2002) Foundation models for the dynamic response of offshore wind turbines

  31. Damgaard M, Ibsen LB, Andersen LV, Andersen JKF (2013) Cross-wind modal properties of offshore wind turbines identified by full scale testing. J Wind Eng Ind Aerodyn 116:94–108. https://doi.org/10.1016/j.jweia.2013.03.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bakhti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhti, R., Benahmed, B. & Laib, A. Finite Element Investigation of Offshore Wind Turbines Natural Frequency with Monopile Foundations System. J. Vib. Eng. Technol. 12, 2437–2449 (2024). https://doi.org/10.1007/s42417-023-00989-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-00989-3

Keywords

Navigation