Skip to main content
Log in

New Nonlinear First-Order Shear Deformation Beam Model Based on Geometrically Exact Theory

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

In this paper, a new geometrically exact model of a first-order shear deformation beam is developed. By use of the derived equations, free vibration and primary resonance of a simply supported beam are studied. In this formulation, the transverse displacements and bending rotations are considered completely independent and this causes the nonlinear behavior of the system to be predicted more accurately than other models. Nonlinear equations of motion are discretized by the Galerkin method and then in order to obtain an analytical solution the method of multiple scales was applied to the resulting equations. The results obtained from the present first-order shear deformation model are verified with other first-order shear deformation models. It will be shown that the present formulation is superior to other nonlinear first-order shear deformation beam theories. The effects of linear and nonlinear shear terms and slenderness ratio are studied on amplitude, linear and nonlinear frequencies of the system, frequency response, and locus of bifurcation points, which are more noticeable in higher vibration modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  MATH  Google Scholar 

  2. Lacarbonara W, Yabuno H (2006) Refined models of elastic beams undergoing large in-plane motions: theory and experiment. Int J Solids Struct 43:5066–5084

    Article  MATH  Google Scholar 

  3. Zhong H, Guo Q (2003) Nonlinear vibration analysis of timoshenko beams using the differential quadrature method. Nonlinear Dyn 32:223–234

    Article  MATH  Google Scholar 

  4. Ansari R, Gholami R, Darabi MA (2012) A nonlinear Timoshenko beam formulation based on strain gradient theory. J Mech Struct. 7(2):195

    Article  Google Scholar 

  5. Ghayesh MH, Amabili M (2013) Three-dimensional nonlinear planar dynamics of an axially moving Timoshenko beam. Arch Appl Mech 83:591–604

    Article  MATH  Google Scholar 

  6. Shahlaei-Far S, Nabarrete A, Balthazar JM (2016) Nonlinear vibration of cantilever Timoshenko beams: a Homotopy analysis. Lat Am J Solids Struct. 13:1866

    Article  Google Scholar 

  7. A Mamandi, MH Kargarnovin 2014 "Nonlinear dynamic analysis of a Timoshenko beam resting on a viscoelastic foundation and traveled by a moving mass," Hindawi publishing corporation shock and vibration.

  8. Asghari M, Kahrobaiyan MH, Ahmadian MT (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48:1749–1761

    Article  MathSciNet  MATH  Google Scholar 

  9. Reddy JN (2010) Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Intern J Eng Sci 48:1507–1518

    Article  MathSciNet  MATH  Google Scholar 

  10. Ramezani S (2012) A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int J Non-Linear Mech 47:863–873

    Article  Google Scholar 

  11. Chowdhury SR, Reddy JN (2019) Geometrically exact microplolar Timoshenko beam and its application in modeling sandwich beams made of architected lattice core. Comp Struct. 226:111228

    Article  Google Scholar 

  12. Fan W, Zhu WD, Zhu H (2019) Dynamic analysis of a rotating planar Timoshenko beam using an accurate global spatial discretization method. J Sound Vib 457:261–279

    Article  Google Scholar 

  13. Danielson DA, Hodges DH (1987) Nonlinear beam kinematics by decomposition of the rotation tensor. Trans ASME. 54:258

    Article  MATH  Google Scholar 

  14. DH Hodges 2006 Nonlinear Composite Beam Theory, Atlanta,Georgia: American Institute of Aeronautics and Astronautics, Inc.1801 Alexander Bell Drive, Reston, Virginia 20191-4344

  15. Lencia S, Rega G (2016) Nonlinear free vibrations of planar elastic beams: a unified treatment of geometrical and mechanical effects. Procedia IUTAM 19:35–42

    Article  Google Scholar 

  16. Kloda L, Lenci S, Warminski J (2018) Nonlinear dynamics of a planar beam–spring system: analytical and numerical approaches. Nonlinear Dyn 94:1721–1738

    Article  Google Scholar 

  17. Cowper GR (1996) The shear coefficient in Timoshenko's beam theory. J Appl Mech 33(2):335–340

    Article  MATH  Google Scholar 

  18. Lestringant C, Audoly B, Kochmann DM (2020) A discrete, geometrically exact method for simulating nonlinear, elastic and inelastic beams. Compt Methods Appl Mech Eng. 361:112741

    Article  MathSciNet  MATH  Google Scholar 

  19. Moshtaghzadeh M, Izadpanahi E, Mardanpour P (2021) Stability analysis of an origami helical antenna using geometrically exact fully intrinsic nonlinear composite beam theory. Eng Struct 234:111894

    Article  Google Scholar 

  20. Qin Y, Wang Z, Zou L (2020) Dynamics of nonlinear transversely vibrating beams: parametric and closed-form solutions. Appl Mathemat Model. 88:676

    Article  MathSciNet  MATH  Google Scholar 

  21. Li W, Ma H, Gao W (2021) Geometrically exact beam element with rational shear stress distribution for nonlinear analysis of FG curved beams. Thin-Walled Struct. 164:107823

    Article  Google Scholar 

  22. Patil MJ, Althoff M (2010) Energy-consistent, Galerkin approach for the nonlinear dynamics of beams using intrinsic equations. J Vibrat Cont. 17:1748–1758

    Article  MathSciNet  MATH  Google Scholar 

  23. Althoff M, Patil MJ, Traugott JP (2012) Nonlinear modeling and control design of active helicopter blades. J Am Helicopt Soc. 57:1

    Article  Google Scholar 

  24. Bekhoucha F, Rechak S, Duigou L, Cadou JM (2013) Nonlinear forced vibrations of rotating anisotropic beams. Nonlinear Dyn 74(4):1281–1296

    Article  MathSciNet  MATH  Google Scholar 

  25. Shang L, Xia P, HODGES DH (2017) Geometrically exact nonlinear analysis of pre-twisted composite rotor blades. Chin J Aeronaut 31(2):300

    Article  Google Scholar 

  26. Alimoradzadeh M, Tornabene F, Dimitrib R, Esfrajania SM (2022) Finite strain-based theory for the superharmonic and subharmonic resonance of beams resting on a nonlinear viscoelastic foundation in thermal conditions, and subjected to a moving mass loading. Intern J Non-Linear Mech. 148:104271

    Article  Google Scholar 

  27. Zhang W, Wang C, Wang Y, Mao JJ, Liu Y (2022) Nonlinear vibration responses of lattice sandwich beams with FGM facesheets based on an improved thermo-mechanical equivalent model. Structures 44:920–932

    Article  Google Scholar 

  28. AH Nayfeh 1973, Perturbation Method, John Wiley & Sons, Inc.

  29. Cosserat B, Cosserat F (1909) Théorie des corps deformables. Hermann, Paris

    MATH  Google Scholar 

  30. RW Ogden 1984 Non-Linear Elastic Deformation, EllisHorwood, Chicester, Sec. 2.2.

  31. GA Wempner 1981 Mechanics of Solids with Application to Thin Bodies, The Netherlands: Sijthoff and Noordhoff.

  32. Lacarbonanra W (2013) Nonlinear structural mechanics. Sapienza University of Rome, Springer, New York Heidelberg Dordrecht London

    Book  Google Scholar 

  33. Nayfeh AH (1993) Indroduction to perturbation techniques. Virginia Polytechnic Institute and State University, Virginia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. A. Hosseini.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The proof of \(\delta \gamma ,\delta \kappa\):

If \(\overline{\delta q}^{B}\) is virtual displacement in the deformed frame and \(\overline{\delta u}\) is in the undeformed frame, then:

$$\overline{\delta u} = C^{T} \overline{\delta q}^{B}$$
(A1)

Virtual rotation is defined as follows:

$$\widetilde{{\overline{\delta \psi } }}^{BA} = - \delta CC^{T} \overline{\delta \psi } =$$
(A2)

From the first part of (10), one can write:

$$\gamma = C\left( {e_{1} + u^{\prime} + \tilde{k}u} \right) - e_{1}$$
(A3)

It can be written as:

$$\begin{gathered} \delta \gamma = \delta C\left( {e_{1} + u^{\prime} + \tilde{k}u} \right) + \widetilde{{\overline{\delta \psi } }}^{BA} C\left( {e_{1} + u^{\prime} + \tilde{k}u} \right) + \hfill \\ \,\,\,\,\,C\left( {\delta u^{\prime} + \tilde{k}\delta u} \right) + C\widetilde{{\overline{\delta \psi } }}^{BA} \left( {e_{1} + u^{\prime} + \tilde{k}u} \right) \hfill \\ \,\,\,\,\,\,\, = \widetilde{{\overline{\delta \psi } }}^{BA} CC^{T} \left( {\gamma + e_{1} } \right) + \widetilde{{\overline{\delta \psi } }}^{BA} \left( {\gamma + e_{1} } \right) + \overline{\delta q}^{{B^{\prime}}} - \hfill \\ \,\,\,\,\left( {C\tilde{k} - \tilde{K}C} \right)C^{T} \overline{\delta q}^{B} + C\tilde{k}C\overline{\delta q}^{B} + C\widetilde{{\overline{\delta \psi } }}^{BA} C^{T} \left( {\gamma + e_{1} } \right) \hfill \\ \,\,\,\,\,\,\, = \overline{\delta q}^{{B^{\prime}}} + \tilde{K}\overline{\delta q}^{B} + C\widetilde{{\overline{\delta \psi } }}^{BA} C^{T} \left( {\gamma + e_{1} } \right) = \overline{\delta q}^{{B^{\prime}}} + \hfill \\ \,\,\,\,\,\,\tilde{K}\overline{\delta q}^{B} - \widetilde{{\overline{\delta \psi } }}^{BA} \left( {\gamma + e_{1} } \right) \hfill \\ \end{gathered}$$
(A4)

Then:

$$\delta \gamma = \overline{\delta q}^{{B^{\prime}}} + \tilde{K}\overline{\delta q}^{B} + \left( {\tilde{e}_{1} + \tilde{\gamma }} \right)\overline{\delta \psi }^{BA}$$
(A5)

From the second part of (10), one can write:

$$\tilde{K} = - C^{\prime}C^{T} + C\tilde{k}C^{T}$$
(A6)

Given that the initial curvature is always constant, it can be written as:

$$\begin{aligned} \delta \tilde{\kappa } &= - \delta C^{\prime}C^{T} - \widetilde{{\overline{\delta \psi } }}^{BA} C^{\prime}C^{T} - C^{\prime}\delta C^{T} - C^{\prime}\widetilde{{\overline{\delta \psi } }}^{BA} C^{T} \hfill \\ &\quad + \delta C\tilde{k}C^{T} + \widetilde{{\overline{\delta \psi } }}^{BA} C\tilde{k}C^{T} + C\tilde{k}\delta C^{T} + C\tilde{k}\widetilde{{\overline{\delta \psi } }}^{BA} C^{T} \hfill \\ & \quad= \widetilde{{\overline{\delta \psi } }}^{{BA^{\prime}}} - \widetilde{{\overline{\delta \psi } }}^{BA} \tilde{K} + \widetilde{{\overline{\delta \psi } }}^{BA} C\tilde{k}C^{T} + \widetilde{{\overline{\delta \psi } }}^{BA} (\tilde{K}C - \hfill \\ & \quad C\tilde{k})C^{T} + (\tilde{K}C - C\tilde{k})C^{T} \widetilde{{\overline{\delta \psi } }}^{BA} \hfill \\ & \quad + (\tilde{K}C - C\tilde{k})\widetilde{{\overline{\delta \psi } }}^{BA} C^{T} - \widetilde{{\overline{\delta \psi } }}^{BA} C\tilde{k}C^{T} + \widetilde{{\overline{\delta \psi } }}^{BA} C\tilde{k}C^{T} \hfill \\ & \quad + C\tilde{k}C^{T} \widetilde{{\overline{\delta \psi } }}^{BA} + C\tilde{k}\widetilde{{\overline{\delta \psi } }}^{BA} C^{T} \hfill \\ &\quad = \widetilde{{\overline{\delta \psi } }}^{{BA^{\prime}}} + \tilde{K}\widetilde{{\overline{\delta \psi } }}^{BA} + \tilde{K}C\widetilde{{\overline{\delta \psi } }}^{BA} C^{T} \hfill \\ &\quad = \widetilde{{\overline{\delta \psi } }}^{{BA^{\prime}}} + \tilde{K}\widetilde{{\overline{\delta \psi } }}^{BA} - \widetilde{{\overline{\delta \psi } }}^{BA} \tilde{K} \hfill \\ \end{aligned}$$
(A7)

then:

$$\delta \kappa = \overline{\delta \psi }^{{BA^{\prime}}} - \tilde{K}\widetilde{{\overline{\delta \psi } }}^{BA}$$
(A8)

Appendix B

$$\alpha = - \left( {\lambda_{2}^{2} k_{s} n^{2} \pi^{2} - \beta_{w}^{2} } \right)/\left( {\pi {\mkern 1mu} nk_{s} \lambda_{2}^{2} } \right)$$
(B1)
$$\delta = - \left( {\lambda_{2}^{2} k_{s} n^{2} \pi^{2} - \beta_{\theta }^{2} } \right)/\left( {\pi {\mkern 1mu} nk_{s} \lambda_{2}^{2} } \right)$$
(B2)
$$Y_{1} = - I_{2}^{2} \pi^{2} n^{2} k_{s} \lambda_{2}^{2} - I_{2} {\mkern 1mu} n^{2} \pi^{2} - I_{2} {\mkern 1mu} k_{s} \lambda_{2}^{2}$$
(B3)
$$Y_{2} = I_{2} \sqrt {\mathop k\nolimits_{s}^{2} \left( {I_{2} {\mkern 1mu} n^{2} \pi^{2} + 1} \right)^{2} \mathop \lambda \nolimits_{2}^{4} - 2{\mkern 1mu} n^{2} \pi^{2} k_{s} \left( {I_{2} {\mkern 1mu} n^{2} \pi^{2} - 1} \right)\mathop \lambda \nolimits_{2}^{2} + \pi^{4} n^{4} }$$
(B4)
$$\Lambda_{1} = 3/2{\mkern 1mu} n^{2} \pi^{2} \alpha^{2} \left( {\lambda_{1}^{2} - \lambda_{2}^{2} k_{s} } \right) - \alpha^{2} \beta_{u}^{2}$$
(B5)
$$\Lambda_{2} = 3/2{\mkern 1mu} n^{2} \pi^{2} \delta^{2} \left( {\lambda_{1}^{2} - \lambda_{2}^{2} k_{s} } \right) - \delta^{2} \beta_{u}^{2}$$
(B6)
$$\Lambda_{3} = - \beta_{u}$$
(B7)
$$\Pi_{1} = - \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{w} c_{2} k_{s} \lambda_{2}^{2} + \pi {\mkern 1mu} n\beta_{w} c_{1} k_{s} \lambda_{2}^{2} + \alpha {\mkern 1mu} \beta_{w}^{3} c_{2}$$
(B8)
$$\begin{gathered} \Pi_{2} = - 9/2{\mkern 1mu} \pi^{4} \alpha {\mkern 1mu} n^{4} k_{s} \lambda_{1}^{2} \lambda_{2}^{2} - 9/4{\mkern 1mu} \pi^{3} \alpha^{2} n^{3} k_{s} \lambda_{1}^{2} \lambda_{2}^{2} - \hfill \\ 73/8{\mkern 1mu} \pi {\mkern 1mu} \alpha^{2} n\beta_{w}^{2} k_{s} \lambda_{2}^{2} - 9/2{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{w}^{2} k_{s} \lambda_{2}^{2} - 3/2{\mkern 1mu} \pi^{2} \hfill \\ \alpha^{3} n^{2} \beta_{w}^{2} - 9/2{\mkern 1mu} \alpha^{3} \beta_{w}^{2} k_{s} \lambda_{2}^{2} + 9{\mkern 1mu} /8\pi^{2} \alpha^{3} n^{2} k_{s}^{2} \lambda_{2}^{4} + \hfill \\ 9/2{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{w}^{2} \lambda_{1}^{2} + 27/4{\mkern 1mu} \pi {\mkern 1mu} \alpha^{2} n\beta_{w}^{2} \lambda_{1}^{2} + 45{\mkern 1mu} /8\pi^{3} \alpha^{2} \hfill \\ n^{3} k_{s}^{2} \lambda_{2}^{4} + 9/2{\mkern 1mu} \pi^{4} \alpha {\mkern 1mu} n^{4} k_{s}^{2} \lambda_{2}^{4} + 3/2{\mkern 1mu} \pi^{4} \alpha^{3} n^{4} k_{s} \lambda_{2}^{2} + \hfill \\ 9/4{\mkern 1mu} \alpha^{3} \beta_{w}^{2} \lambda_{1}^{2} + 3/2{\mkern 1mu} I2{\mkern 1mu} \alpha^{3} \beta_{w}^{4} - 3/2{\mkern 1mu} I2{\mkern 1mu} \pi^{2} \alpha^{3} n^{2} \beta_{w}^{2} \hfill \\ k_{s} \lambda_{2}^{2} \hfill \\ \end{gathered}$$
(B9)
$$\begin{gathered} \Pi_{3} = 9/2{\mkern 1mu} \alpha {\mkern 1mu} \delta^{2} \beta_{w}^{2} \lambda_{1}^{2} + 3/2{\mkern 1mu} I2{\mkern 1mu} \alpha {\mkern 1mu} \delta^{2} \beta_{w}^{4} - 3{\mkern 1mu} \pi^{4} \alpha {\mkern 1mu} n^{4} k_{s} \hfill \\ \lambda_{1}^{2} \lambda_{2}^{2} - 3{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{w}^{2} k_{s} \lambda_{2}^{2} - 3{\mkern 1mu} \pi^{3} \alpha {\mkern 1mu} \delta {\mkern 1mu} n^{3} k_{s} \lambda_{1}^{2} \lambda_{2}^{2} - \hfill \\ 27/2{\mkern 1mu} \pi \alpha {\mkern 1mu} \delta {\mkern 1mu} n\beta_{w}^{2} k_{s} \lambda_{2}^{2} + 15/2{\mkern 1mu} \pi^{3} \alpha \delta {\mkern 1mu} n^{3} k_{s}^{2} \lambda_{2}^{4} + 9{\mkern 1mu} \pi {\mkern 1mu} \alpha {\mkern 1mu} \delta \hfill \\ {\mkern 1mu} n\beta_{w}^{2} \lambda_{1}^{2} - 19{\mkern 1mu} /4\pi {\mkern 1mu} \delta^{2} n\beta_{w}^{2} k_{s} \lambda_{2}^{2} - 6{\mkern 1mu} \pi^{2} \delta {\mkern 1mu} n^{2} \beta_{w}^{2} k_{s} \lambda_{2}^{2} + \hfill \\ 3{\mkern 1mu} \pi^{4} \alpha {\mkern 1mu} \delta^{2} n^{4} k_{s} \lambda_{2}^{2} + 9/4{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} \delta^{2} n^{2} k_{s}^{2} \lambda_{2}^{4} - 3/2{\mkern 1mu} \pi^{3} \delta^{2} n^{3} \hfill \\ k_{s} \lambda_{1}^{2} \lambda_{2}^{2} - 6{\mkern 1mu} \pi^{4} \delta {\mkern 1mu} n^{4} k_{s} \lambda_{1}^{2} \lambda_{2}^{2} - 3/2{\mkern 1mu} I2{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} \delta^{2} n^{2} \beta_{w}^{2} k_{s} \hfill \\ \lambda_{2}^{2} - 3/2{\mkern 1mu} I_{2} {\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} \delta^{2} n^{2} \beta_{\theta }^{2} k_{s} \lambda_{2}^{2} + 3/2{\mkern 1mu} I2{\mkern 1mu} \alpha {\mkern 1mu} \delta^{2} \beta_{\theta }^{2} \beta_{w}^{2} \hfill \\ - 9{\mkern 1mu} \alpha {\mkern 1mu} \delta^{2} \beta_{w}^{2} k_{s} \lambda_{2}^{2} + 15{\mkern 1mu} /4\pi^{3} \delta^{2} n^{3} k_{s}^{2} \lambda_{2}^{4} + 6{\mkern 1mu} \pi^{4} \delta {\mkern 1mu} n^{4} k_{s}^{2} \hfill \\ \lambda_{2}^{4} - 3{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} \delta^{2} n^{2} \beta_{w}^{2} + 9/2{\mkern 1mu} \pi {\mkern 1mu} \delta^{2} n\beta_{w}^{2} \lambda_{1}^{2} + 6{\mkern 1mu} \pi^{2} \delta {\mkern 1mu} n^{2} \hfill \\ \beta_{w}^{2} \lambda_{1}^{2} + 3{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{w}^{2} \lambda_{1}^{2} + 3{\mkern 1mu} \pi^{4} \alpha {\mkern 1mu} n^{4} k_{s}^{2} \lambda_{2}^{4} \hfill \\ \end{gathered}$$
(B10)
$$\begin{gathered} \Pi_{4} = 3/4{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{w}^{2} k_{s} \lambda_{2}^{2} + 3/4{\mkern 1mu} \pi^{4} \alpha {\mkern 1mu} n^{4} k_{s} \lambda_{1}^{2} \lambda_{2}^{2} - \hfill \\ 3/4{\mkern 1mu} \pi^{4} \alpha {\mkern 1mu} n^{4} k_{s}^{2} \lambda_{2}^{4} - 3/4{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{w}^{2} \lambda_{1}^{2} \hfill \\ \end{gathered}$$
(B11)
$$\Pi_{5} = - 2{\mkern 1mu} I_{2} {\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{w} k_{s} \lambda_{2}^{2} + 2{\mkern 1mu} \pi {\mkern 1mu} n\beta_{w} k_{s} \lambda_{2}^{2} + 2{\mkern 1mu} I_{2} {\mkern 1mu} \alpha {\mkern 1mu} \beta_{w}^{3}$$
(B12)
$$\Pi_{6} = 1/2{\mkern 1mu} \pi {\mkern 1mu} nk_{s} \lambda_{2}^{2}$$
(B13)
$$\Delta_{1} = - \pi^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta } c_{2} k_{s} \lambda_{2}^{2} + \pi {\mkern 1mu} n\beta_{\theta } c_{1} k_{s} \lambda_{2}^{2} + \delta {\mkern 1mu} \beta_{\theta }^{3} c_{2}$$
(B14)
$$\begin{gathered} \Delta_{2} = - 3/2{\mkern 1mu} I2{\mkern 1mu} \pi^{2} \delta^{3} n^{2} \beta_{\theta }^{2} k_{s} \lambda_{2}^{2} - 3/2{\mkern 1mu} \pi^{2} \delta^{3} n^{2} \beta_{\theta }^{2} - 9/2{\mkern 1mu} \hfill \\ \delta^{3} \beta_{\theta }^{2} k_{s} \lambda_{2}^{2} + 9/2{\mkern 1mu} \pi^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta }^{2} \lambda_{1}^{2} + 27{\mkern 1mu} /4\pi {\mkern 1mu} \delta^{2} n\beta_{\theta }^{2} \lambda_{1}^{2} + \hfill \\ 45/8{\mkern 1mu} \pi^{3} \delta^{2} n^{3} k_{s}^{2} \lambda_{2}^{4} + 9/2{\mkern 1mu} \pi^{4} \delta {\mkern 1mu} n^{4} k_{s}^{2} \lambda_{2}^{4} + 3/2{\mkern 1mu} \pi^{4} \delta^{3} n^{4} \hfill \\ k_{s} \lambda_{2}^{2} + 9/8\pi^{2} \delta^{3} n^{2} k_{s}^{2} \lambda_{2}^{4} - 73/8{\mkern 1mu} \pi {\mkern 1mu} \delta^{2} n\beta_{\theta }^{2} k_{s} \lambda_{2}^{2} - \hfill \\ 9/4\pi^{3} \delta^{2} n^{3} k_{s} \lambda_{1}^{2} \lambda_{2}^{2} - 9/2{\mkern 1mu} \pi^{4} \delta {\mkern 1mu} n^{4} k_{s} \lambda_{1}^{2} \lambda_{2}^{2} - 9/2{\mkern 1mu} \hfill \\ \pi^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta }^{2} k_{s} \lambda_{2}^{2} + 9/4{\mkern 1mu} \delta^{3} \beta_{\theta }^{2} \lambda_{1}^{2} + 3/2{\mkern 1mu} I_{2} {\mkern 1mu} \delta^{3} \beta_{\theta }^{4} \hfill \\ \end{gathered}$$
(B15)
$$\begin{gathered} \Delta_{3} = - 3/2{\mkern 1mu} I_{2} {\mkern 1mu} \pi^{2} \alpha^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta }^{2} k_{s} \lambda_{2}^{2} - 3/2{\mkern 1mu} I_{2} {\mkern 1mu} \pi^{2} \alpha^{2} \delta {\mkern 1mu} n^{2} \beta_{w}^{2} \hfill \\ k_{s} \lambda_{2}^{2} - 6{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{\theta }^{2} k_{s} \lambda_{2}^{2} + 9{\mkern 1mu} \pi {\mkern 1mu} \alpha {\mkern 1mu} \delta {\mkern 1mu} n\beta_{\theta }^{2} \lambda_{1}^{2} + 3{\mkern 1mu} \pi^{4} \alpha^{2} \delta \hfill \\ {\mkern 1mu} n^{4} k_{s} \lambda_{2}^{2} + 9/4{\mkern 1mu} \pi^{2} \alpha^{2} \delta {\mkern 1mu} n^{2} k_{s}^{2} \lambda_{2}^{4} - 19{\mkern 1mu} /4\pi {\mkern 1mu} \alpha^{2} n\beta_{\theta }^{2} k_{s} \lambda_{2}^{2} \hfill \\ - 3{\mkern 1mu} \pi^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta }^{2} k_{s} \lambda_{2}^{2} - 27/2{\mkern 1mu} \pi {\mkern 1mu} \alpha {\mkern 1mu} \delta {\mkern 1mu} n\beta_{\theta }^{2} k_{s} \lambda_{2}^{2} - 9{\mkern 1mu} \alpha^{2} \delta {\mkern 1mu} \beta_{\theta }^{2} \hfill \\ k_{s} \lambda_{2}^{2} + 3/2{\mkern 1mu} I_{{2{\mkern 1mu} }} \alpha^{2} \delta {\mkern 1mu} \beta_{\theta }^{2} \beta_{w}^{2} - 3{\mkern 1mu} \pi^{2} \alpha^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta }^{2} + 9/2{\mkern 1mu} \pi {\mkern 1mu} \alpha^{2} \hfill \\ n\beta_{\theta }^{2} \lambda_{1}^{2} + 6{\mkern 1mu} \pi^{2} \alpha {\mkern 1mu} n^{2} \beta_{\theta }^{2} \lambda_{1}^{2} + 3{\mkern 1mu} \pi^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta }^{2} \lambda_{1}^{2} - 6{\mkern 1mu} \pi^{4} \alpha {\mkern 1mu} n^{4} \hfill \\ k_{s} \lambda_{1}^{2} \lambda_{2}^{2} - 3/2{\mkern 1mu} \pi^{3} \alpha^{2} n^{3} k_{s} \lambda_{1}^{2} \lambda_{2}^{2} \hfill \\ \end{gathered}$$
(B16)
$$\begin{gathered} \Delta_{4} = 3/4{\mkern 1mu} \pi^{4} \delta {\mkern 1mu} n^{4} k_{s} \lambda_{1}^{2} \lambda_{2}^{2} + 3/4{\mkern 1mu} \pi^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta }^{2} k_{s} \lambda_{2}^{2} - 3/4{\mkern 1mu} \hfill \\ \pi^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta }^{2} \lambda_{1}^{2} - 3/4{\mkern 1mu} \pi^{4} \delta {\mkern 1mu} n^{4} k_{s}^{2} \lambda_{2}^{4} \hfill \\ \end{gathered}$$
(B17)
$$\begin{gathered} \Delta_{5} = - 2{\mkern 1mu} I_{2} {\mkern 1mu} \pi^{2} \delta {\mkern 1mu} n^{2} \beta_{\theta } k_{s} \lambda_{2}^{2} + 2{\mkern 1mu} \pi {\mkern 1mu} n\beta_{\theta } k_{s} \lambda_{2}^{2} + \hfill \\ 2{\mkern 1mu} I_{{2{\mkern 1mu} }} \delta {\mkern 1mu} \beta_{\theta }^{3} \hfill \\ \end{gathered}$$
(B18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beiranvand, H., Hosseini, S.A.A. New Nonlinear First-Order Shear Deformation Beam Model Based on Geometrically Exact Theory. J. Vib. Eng. Technol. 11, 4187–4204 (2023). https://doi.org/10.1007/s42417-022-00809-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00809-0

Keywords

Navigation