Skip to main content
Log in

An Integrated Balancing Method for Asymmetric Rotor-Bearing Systems: Algebraic Identification, Modal Balancing, and Active Balancing Disks

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The effect of an asymmetric transversal section on the rotor vibration behavior has recently acquired great interest, mainly due to the expansion in the usage of this type of rotor as well as the lack of effective balancing methods. In this work, an integrated method for Balancing Asymmetric Rotor-Bearing Systems is presented.

Methods

The proposed method consists in using the advantages of the conventional modal balancing (modal masses array) and then combining it with the methodology of parameter algebraic identification; the latter allows identifying both the magnitude as well as the angular position of the unbalance at low rotor speed regardless the nominal speed, preventing the system from operating at a critical speed. The proposed algebraic identifier requires the rotor vibration response as input data, instead of the vibration response produced by trial masses required in the conventional balancing methods. Likewise, the use of active balancing disks (ABDs) is proposed for rotor balancing.

Results

 The identification of the unbalance parameters and their angular position was numerically validated by considering that the rotor operates at (a) constant speed and (b) variable speed at different angular velocities with lineal coast up. The proposed methodology was used to numerically balance a multiple degree-of-freedom rotor with unequal principal moments of inertia of the shaft transverse section and discrete unbalance, achieving a reduction of more than 95% in the vibration amplitude of the rotor in resonance for four vibration modes. The numerical results showed that a single trial balancing run is required to balance the asymmetric rotor-bearing system in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48

Similar content being viewed by others

References

  1. Ikeda T, Murakami S (1999) Dynamic response and stability of a rotating asymmetric shaft mounted on a flexible base. Nonlinear Dyn 20:1–19. https://doi.org/10.1023/A:1008302203981

    Article  MATH  Google Scholar 

  2. Ganesan R (2000) Effects of bearing and shaft asymmetries on the instability of rotors operating at near-critical speeds. Mech Mach Theory 35:737–752. https://doi.org/10.1016/S0094-114X(99)00038-5

    Article  MATH  Google Scholar 

  3. Kang Y, Hwang W-W (1996) Influence of bearing damping on instability of asymmetric shafts—Part I. Stabilizing and destabilizing effects. Int J Mech Sci 38:1349–1358. https://doi.org/10.1016/0020-7403(96)87213-4

    Article  MATH  Google Scholar 

  4. Kang Y, Lee Y-G (1996) Influence of bearing damping on instability of asymmetric shafts—Part II. Mode veering Int J Mech Sci 38:1359–1365. https://doi.org/10.1016/0020-7403(96)00028-8

    Article  MATH  Google Scholar 

  5. Kang Y, Lee Y-G (1997) Influence of bearing damping on instability of asymmetric shafts—Part III. Disk effects Int J Mech Sci 39:1055–1065. https://doi.org/10.1016/S0020-7403(97)00006-4

    Article  MATH  Google Scholar 

  6. Wettergren HL, Olsson K-O (1996) Dynamic instability of a rotating asymmetric shaft with internal viscous damping supported in anisotropic bearings. J Sound Vib 195:75–84. https://doi.org/10.1006/jsvi.1996.0404

    Article  Google Scholar 

  7. Ferfecki P, Zaoral F, Zapoměl J (2019) Using floquet theory in the procedure for investigation of the motion stability of a rotor system exhibiting parametric and self-excited vibration. Strojnícky časopis - J Mech Eng 69:33–42. https://doi.org/10.2478/scjme-2019-0027

    Article  Google Scholar 

  8. Zheng Z, Xie Y, Zhang D, Ye X (2019) Effects of stator stiffness, gap size, unbalance, and shaft’s asymmetry on the steady-state response and stability range of an asymmetric rotor with rub-impact. Shock Vib 2019:1–11. https://doi.org/10.1155/2019/6162910

    Article  Google Scholar 

  9. Bharti SK, Sinha A, Samantaray AK, Bhattacharyya R (2020) The Sommerfeld effect of second kind: passage through parametric instability in a rotor with non-circular shaft and anisotropic flexible supports. Nonlinear Dyn 100:3171–3197. https://doi.org/10.1007/s11071-020-05681-9

    Article  Google Scholar 

  10. Ishida Y, Liu J (2010) Elimination of unstable ranges of rotors utilizing discontinuous spring characteristics: an asymmetrical shaft system, an asymmetrical rotor system, and a rotor system with liquid. J Vib Acoust 132:0110111–0110118. https://doi.org/10.1115/1.4000842

    Article  Google Scholar 

  11. Ghasabi SA, Arbabtafti M, Shahgholi M (2020) Time-delayed control of a nonlinear asymmetrical rotor near the major critical speed with flexible supports. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1715230

    Article  MATH  Google Scholar 

  12. Fan Y-H, Chen S-T, Lee A-C (1992) Active control of an asymmetrical rigid rotor supported by magnetic bearings. J Franklin Inst 329:1153–1178. https://doi.org/10.1016/0016-0032(92)90009-6

    Article  Google Scholar 

  13. Brahem M, Chouchane M, Amamou A (2020) Active vibration control of a rotor bearing system using flexible piezoelectric patch actuators. J Intell Mater Syst Struct 31:1284–1297. https://doi.org/10.1177/1045389X20916804

    Article  Google Scholar 

  14. Lai T, Liu J (2020) Active vibration control of a rotor-bearing-actuator system using robust eigenvalue placement method. Meas Control 53:531–540. https://doi.org/10.1177/0020294019836125

    Article  Google Scholar 

  15. Taylor HD (1940) Critical speed behavior of unsymmetrical shafts. J Appl Mech 7:A71–A79. https://doi.org/10.1115/1.4009017

    Article  MATH  Google Scholar 

  16. Bishop RED, Parkinson AG (1965) Second order vibration of flexible shafts. Philos Trans R Soc London Ser A, Math Phys Sci 259:1–31. https://doi.org/10.1098/rsta.1965.0052

    Article  Google Scholar 

  17. Matsukura Y, Inoue T, Kiso M et al (1979) Estimation of the distributing cross sectional asymmetry along the rotor axis. Bull JSME 22:491–496. https://doi.org/10.1299/jsme1958.22.491

    Article  Google Scholar 

  18. Parkinson AG (1966) On the balancing of shafts with axial asymmetry. Proc R Soc London Ser A Math Phys Sci 294:66–79. https://doi.org/10.1098/rspa.1966.0194

    Article  Google Scholar 

  19. Matsukura Y, Kiso M, Inoue T, Tomisawa M (1979) On the balancing convergence of flexible rotors, with special reference to asymmetric rotors. J Sound Vib 63:419–428. https://doi.org/10.1016/0022-460X(79)90684-9

    Article  Google Scholar 

  20. Songbo, X., W. Xinghua, W. Guangming, P. Yucai, L. Rongqiang, and X. Shichang (1989) A New Balance Method for Flexible Rotors with Asymmetric Principal Stiffnesses. American Society of Mechanical Engineers, Design Engineering Division (Publication) 18:1

  21. Shiraki K, Kanki H (1975) New field balancing method on tandem connected multi-span flexible rotor system. In: in Dynamics of Rotors (IUTAM Symposium Lyngby, Denmark, August 12–16, 1974). The Proceedings of the Symposium, pp 494–523

  22. Kang Y, Liu C-P, Sheen G-J (1996) A modified influence coefficient method for balancing unsymmetrical rotor-bearing systems. J Sound Vib 194:199–218. https://doi.org/10.1006/jsvi.1996.0353

    Article  Google Scholar 

  23. Kang Y, Sheen G-J, Wang S-M (1997) Development and modification of a unified balancing method for unsymmetrical rotor-bearing systems. J Sound Vib 199:349–369. https://doi.org/10.1006/jsvi.1996.0652

    Article  Google Scholar 

  24. Kang Y, Chiang C-P, Wang C-C et al (2003) The minimization method of measuring errors for balancing asymmetrical rotors. JSME Int J Ser C 46:1017–1025. https://doi.org/10.1299/jsmec.46.1017

    Article  Google Scholar 

  25. Colín Ocampo J, Gutiérrez Wing ES, Ramírez Moroyoqui FJ et al (2017) A novel methodology for the angular position identification of the unbalance force on asymmetric rotors by response polar plot analysis. Mech Syst Signal Process 95:172–186. https://doi.org/10.1016/j.ymssp.2017.03.028

    Article  Google Scholar 

  26. Fliess M, Sira-Ramírez H (2003) An algebraic framework for linear identification. ESAIM Control Optim Calc Var 9:151–168. https://doi.org/10.1051/cocv:2003008

    Article  MathSciNet  MATH  Google Scholar 

  27. Blanco-Ortega A, Silva-Navarro G, Coln-Ocampo J et al (2012) Automatic balancing of rotor-bearing systems. Advances on analysis and control of vibrations - theory and applications. InTech

    Google Scholar 

  28. Beltran-Carbajal F, Silva-Navarro G, Arias-Montiel M (2013) Active unbalance control of rotor systems using on-line algebraic identification methods. Asian J Control 15:1627–1637. https://doi.org/10.1002/asjc.744

    Article  MATH  Google Scholar 

  29. Arias-Montiel M, Beltrán-Carbajal F, Silva-Navarro G (2014) On-line algebraic identification of eccentricity parameters in active rotor-bearing systems. Int J Mech Sci 85:152–159. https://doi.org/10.1016/j.ijmecsci.2014.05.027

    Article  Google Scholar 

  30. Mendoza Larios JG, Colín Ocampo J, Blanco Ortega A et al (2016) Balanceo Automático de un Sistema Rotor-Cojinete: Identificador Algebraico en Línea del Desbalance Para un Sistema Rotodinámico. Rev Iberoam Automática e Informática Ind RIAI 13:281–292. https://doi.org/10.1016/j.riai.2016.03.004

    Article  Google Scholar 

  31. Colín Ocampo J, Mendoza Larios JG, Blanco Ortega A et al (2016) Determinación del Desbalance en Sistemas Rotor-cojinete a velocidad constante: Método de Identificación Algebraica. Ing mecánica, Tecnol y Desarro 5:385–394

    Google Scholar 

  32. Mendoza-Larios JG, Barredo E, Arias-Montiel M et al (2021) An algebraic approach for identification of rotordynamic parameters in bearings with linearized force coefficients. Mathematics 9:2747. https://doi.org/10.3390/math9212747

    Article  Google Scholar 

  33. Lalanne M, Ferraris G (1988) Rotordynamics prediction in engineering, 2nd edn. John Wiley and Sons

    Google Scholar 

  34. Blanco-Ortega A, Beltran-Carbajal F, Favela-Contreras A, Silva-Navarro G (2008) Active disk for automatic balancing of rotor-bearing sytems. In: 2008 American Control Conference. IEEE, pp 3023–3028

  35. Blanco-Ortega A, Beltrán-Carbajal F, Silva-Navarro G, Méndez-Azúa H (2010) Control de Vibraciones en Maquinaria Rotatoria. Rev Iberoam Automática e Informática Ind RIAI 7:36–43. https://doi.org/10.1016/S1697-7912(10)70058-3

    Article  Google Scholar 

  36. Bishop RED, Parkinson AG (1972) On the use of balancing machines for flexible rotors. J Eng Ind 94:561–572. https://doi.org/10.1115/1.3428193

    Article  Google Scholar 

  37. Bishop RED, Gladwell GML (1959) The vibration and balancing of an unbalanced flexible rotor. J Mech Eng Sci 1:66–77. https://doi.org/10.1243/JMES_JOUR_1959_001_010_02

    Article  MATH  Google Scholar 

  38. Lin YH (1994) Vibration analysis of timoshenko beams transversed by moving loads. J Mar Technol 2:25–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Colín-Ocampo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltazar-Tadeo, L.A., Colín-Ocampo, J., Mendoza-Larios, J.G. et al. An Integrated Balancing Method for Asymmetric Rotor-Bearing Systems: Algebraic Identification, Modal Balancing, and Active Balancing Disks. J. Vib. Eng. Technol. 11, 619–645 (2023). https://doi.org/10.1007/s42417-022-00598-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00598-6

Keywords

Navigation