Skip to main content
Log in

Explicit Formulas for Optimal Parameters of Friction Dynamic Vibration Absorber Attached to a Damped System Under Various Excitations

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

In this paper, a damped one degree-of-freedom system equipped with a friction dynamic vibration absorber is considered. The optimal parameters: tuning frequency ratio and friction slip load are derived for various excitations: harmonic force, random force, harmonic base acceleration, and random base acceleration. The random excitation is modeled as Gaussian white noise, with constant power spectral density. First, a linearization technique is used to solve the equations of motion. Then, the optimization is conducted analytically for the undamped system, it is based on viscous absorber parameters. Finally, explicit formulas for the damped system are determined using curve fitting methods. The present paper has the advantage of determining analytically the optimal parameters of the friction absorber. It is found that the proposed formulas lead to optimal response, rapidly and accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hartung A, Schmieg H, Vielsack P (2001) Passive vibration absorber with dry friction. Arch Appl Mech 71(6–7):463–472

    Article  MATH  Google Scholar 

  2. Louroza MA, Roitma N, Magluta C (2005) Vibration reduction using passive absorption system with coulomb damping. Mech Syst Signal Process 19:537–549

    Article  Google Scholar 

  3. Balaji PS, Karthik SKK (2020) Applications of nonlinearity in passive vibration control. J Vib Eng Technol:9–213

  4. Pratt TK, Williams R (1981) Non-linear analysis of stick/slip motion. J Sound Vib 74(4):531–542

    Article  Google Scholar 

  5. Fehlberg E (1970) Klassische Runge-Kutta-Formeln Vierter und Niedrigerer Ordnung mit Schrittweiten-Kontrolle und Ihre Anwendung auf Wärmeleitungsprobleme. Computing 6(1–2):61–71

    Article  MathSciNet  MATH  Google Scholar 

  6. Bereteu L (2003) Numerical integration of the differential equations for one dynamic system with dry friction coupling. FactaUniv Ser Mech Automat Control Robot 3(14):931–936

    MATH  Google Scholar 

  7. Fang J, Wang Q, Wang S (2012) Min-max criterion to the optimal design of vibration absorber in a system with coulomb friction and viscous damping. Nonlinear Dyn 70(1):393–400

    Article  MathSciNet  Google Scholar 

  8. Gewei Z, Basu B (2010) A study on friction-tuned mass damper: harmonic solution and statistical linearization. J Vib Control 17(5):721–731

    Article  MathSciNet  MATH  Google Scholar 

  9. Warburton GB (1982) Optimum absorber parameters for various combinations of response and excitation parameters. Earthq Eng Struct Dyn 10(3):381–401

    Article  Google Scholar 

  10. Randall SE, Halsted DM, Taylor DL (1981) Optimum vibration absorbers for linear damped systems. J Mech Des 103(4):908–913

    Google Scholar 

  11. Pennestrì E (1998) An application of Chebyshev’s min-max criterion to the optimal design of a damped dynamic vibration absorber. J Sound Vib 217(4):757–765

    Article  MathSciNet  Google Scholar 

  12. Brown B, Singh T (2011) Minimax design of vibration absorbers for linear damped systems. J Sound Vib 330(11):2437–2448

    Article  Google Scholar 

  13. Zuo L, Nayfeh SA (2004) Minimax optimization of multi-degree-of-freedom tuned mass dampers. J Sound Vib 272(3–5):893–908

    Article  Google Scholar 

  14. Tsai HC, Lin GC (1994) Explicit formulae for optimum absorber parameters for force-excited and viscously damped systems. J Sound Vib 176(5):585–596

    Article  MATH  Google Scholar 

  15. Bakre SV, Jangid RS (2007) Optimum parameters of the tuned mass damper for the damped main system. Struct Control Health Monit 14(3):448–470

    Article  Google Scholar 

  16. Leung AYT, Zhang H (2009) Particle swarm optimization of tuned mass dampers. Eng Struct 31(3):715–728

    Article  Google Scholar 

  17. Slavi J, Rizzi E (2012) a numerical approach towards best tuning of tuned mass dampers. In: 25th International conference on noise and vibration engineering (ISMA), Leuven, Belgium

  18. Ricciardelli F, Vickery B (1999) Tuned vibration absorbers with dry friction damping. Earthq Eng Struct Dyn 28(7):707–723

    Article  Google Scholar 

  19. Nasr A, Mrad C, Nasri R (2018) Friction tuned mass damper optimization for structure under harmonic force excitation. Struct Eng Mech 65(6):761–769

    Google Scholar 

  20. Sinha A, Trikutam KT (2018) Optimal vibration absorber with a friction damper. J Vib Acoust 140(2):021015

    Article  Google Scholar 

  21. Kim SY, Lee CH (2019) Peak response of frictional tuned mass dampers optimally designed to white noise base acceleration. Mech Syst Signal Process 117:319–332

    Article  Google Scholar 

  22. Den Hartog JP (1947) Mechanical vibrations. McGraw-Hill, USA

    MATH  Google Scholar 

  23. Sinha A (2010) Vibration of mechanical systems. Cambridge University Press, USA

    Book  MATH  Google Scholar 

  24. The MathWorks Inc. (2011) MATLAB User’s guide and optimization toolbox, USA

  25. Liu K, Liu J (2005) The damped dynamic vibration absorbers: revisited and new results. J Sound Vib 284(3–5):1181–1189

    Article  Google Scholar 

  26. Hoang N, Fujino Y, Warnitchai P (2008) Optimal tuned mass damper for seismic applications and practical design formulas. Eng Struct 30(3):707–715

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymen Nasr.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

For harmonic force, defining the dimensionless time as \(\tau ={\omega }_{1}t\), and dividing Eqs. (5) by m1 for the first, and by m2 for the second, the equations of motion are expressed as follows:

$$\begin{array}{*{20}c} {\omega_{1}^{2} \ddot{x}_{1} + \frac{{c_{1} }}{{m_{1} }}\omega_{1} \dot{x}_{1} + \frac{{k_{1} }}{{m_{1} }}x_{1} + \frac{{k_{2} }}{{m_{1} }}\left( {x_{1} - x_{2} } \right) + \frac{\mu N}{{m_{1} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = \frac{{F_{0} }}{{m_{1} }}e^{i\omega \tau } ,} \\ {\omega_{1}^{2} \ddot{x}_{2} - \frac{{k_{2} }}{{m_{2} }}\left( {x_{1} - x_{2} } \right) - \frac{\mu N}{{m_{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = 0,} \\ \end{array}$$
(43)

where \(\omega = \frac{\Omega }{{\omega_{1} }}\), \(\omega_{1}^{2} \ddot{x}_{1} = \omega_{1}^{2} \frac{{{\text{d}}^{2} x_{1} \left( \tau \right)}}{{{\text{d}}\tau^{2} }} = \frac{{{\text{d}}^{2} x_{1} \left( t \right)}}{{{\text{d}}t^{2} }}\), \(\omega_{1}^{2} \ddot{x}_{2} = \omega_{1}^{2} \frac{{{\text{d}}^{2} x_{2} \left( \tau \right)}}{{{\text{d}}\tau^{2} }} = \frac{{{\text{d}}^{2} x_{2} \left( t \right)}}{{{\text{d}}t^{2} }}\), \(\omega_{1} \dot{x}_{1} = \omega_{1} \frac{{{\text{d}}x_{1} \left( \tau \right)}}{{{\text{d}}\tau }}\), \(\omega_{1} \dot{x}_{2} = \omega_{1} \frac{{{\text{d}}x_{2} \left( t \right)}}{{{\text{d}}t}}\) Then, dividing Eqs. (43) by\({\omega }_{1}^{2}\), the equations become:

$$\begin{array}{*{20}c} {\ddot{x}_{1} + 2\xi_{1} \dot{x}_{1} + x_{1} + r\omega_{{\text{a}}}^{2} \left( {x_{1} - x_{2} } \right) + \frac{\mu N}{{m_{1} \omega_{1}^{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = \frac{{F_{0} }}{{m_{1} \omega_{1}^{2} }}e^{i\omega \tau } ,} \\ {\ddot{x}_{2} - \omega_{{\text{a}}}^{2} \left( {x_{1} - x_{2} } \right) - \frac{\mu N}{{m_{2} \omega_{1}^{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = 0,} \\ \end{array}$$
(44)

where \(r = \frac{{m_{2} }}{{m_{1} }},\;\omega_{{\text{a}}} = \frac{{\omega_{2} }}{{\omega_{1} }},\;\xi_{1} = \frac{{c_{1} }}{{2m_{1} \omega_{1} }},\;\omega_{1} = \sqrt {\frac{{k_{1} }}{{m_{1} }}} ,\;\omega_{2} = \sqrt {\frac{{k_{2} }}{{m_{2} }}} .\)

The displacement xs is introduced, it is defined as:

$$x_{s} = \frac{{F_{0} }}{{m_{1} \omega_{1}^{2} }}.$$

Now, dividing Eqs. (44) by xs, the following equations are obtained:

$$\begin{array}{*{20}c} {\ddot{y}_{1} + 2\xi_{1} \dot{y}_{1} + y_{1} + r\omega_{{\text{a}}}^{2} \left( {y_{1} - y_{2} } \right) + \delta {\text{sign}}\left( {\dot{y}_{1} - \dot{y}_{2} } \right) = e^{i\omega \tau } ,} \\ {\ddot{y}_{2} - \omega_{{\text{a}}}^{2} \left( {y_{1} - y_{2} } \right) - \frac{\delta }{r}{\text{sign}}\left( {\dot{y}_{1} - \dot{y}_{2} } \right) = 0,} \\ \end{array}$$
(45)

where \(y_{1} = \frac{{x_{1} }}{{x_{s} }},y_{2} = \frac{{x_{2} }}{{x_{s} }},\delta = \frac{\mu N}{{F_{0} }}.\)

Appendix 2

For harmonic acceleration, using the dimensionless time \(\tau ={\omega }_{1}t\), and dividing Eqs. (8) by m1 for the first, and by m2 for the second, the equations of motion are expressed as follows

$$\begin{array}{*{20}c} {\omega_{1}^{2} \ddot{x}_{1} + \frac{{c_{1} }}{{m_{1} }}\omega_{1} \dot{x}_{1} + \frac{{k_{1} }}{{m_{1} }}x_{1} + \frac{{k_{2} }}{{m_{1} }}\left( {x_{1} - x_{2} } \right) + \frac{\mu N}{{m_{1} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = - G_{0} e^{i\omega \tau } ,} \\ {\omega_{1}^{2} \ddot{x}_{2} - \frac{{k_{2} }}{{m_{2} }}\left( {x_{1} - x_{2} } \right) - \frac{\mu N}{{m_{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = - G_{0} e^{i\omega \tau } .} \\ \end{array}$$
(46)

Then, dividing Eqs. (46) by \({\omega }_{1}^{2}\), the equations become:

$$\begin{array}{*{20}c} {\ddot{x}_{1} + 2\xi_{1} \dot{x}_{1} + x_{1} + r\omega_{a}^{2} \left( {x_{1} - x_{2} } \right) + \frac{\mu N}{{m_{1} \omega_{1}^{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = - \frac{{G_{0} }}{{\omega_{1}^{2} }}e^{i\omega \tau } ,} \\ {\ddot{x}_{2} - \omega_{a}^{2} \left( {x_{1} - x_{2} } \right) - \frac{\mu N}{{m_{2} \omega_{1}^{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = - \frac{{G_{0} }}{{\omega_{1}^{2} }}e^{i\omega \tau } .} \\ \end{array}$$
(47)

The displacement xs is introduced, it is defined as:

$$x_{s} = \frac{{G_{0} }}{{\omega_{1}^{2} }}.$$

Now, dividing Eqs. (47) by xs, the following equations are obtained:

$$\begin{array}{*{20}c} {\ddot{y}_{1} + 2\xi_{1} \dot{y}_{1} + y_{1} + r\omega_{{\text{a}}}^{2} \left( {y_{1} - y_{2} } \right) + \delta {\text{sign}}\left( {\dot{y}_{1} - \dot{y}_{2} } \right) = - e^{i\omega \tau } ,} \\ {\ddot{y}_{2} - \omega_{{\text{a}}}^{2} \left( {y_{1} - y_{2} } \right) - \frac{\delta }{r}{\text{sign}}\left( {\dot{y}_{1} - \dot{y}_{2} } \right) = - e^{i\omega \tau } .} \\ \end{array}$$
(48)

Appendix 3

For random force, dividing Eqs. (21) by m1 for the first, and by m2 for the second, the equations of motion are expressed as follows:

$$\begin{array}{*{20}c} {\omega_{1}^{2} \ddot{x}_{1} + \frac{{c_{1} }}{{m_{1} }}\omega_{1} \dot{x}_{1} + \frac{{k_{1} }}{{m_{1} }}x_{1} + \frac{{k_{2} }}{{m_{1} }}\left( {x_{1} - x_{2} } \right) + \frac{\mu N}{{m_{1} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = \frac{F}{{m_{1} }},} \\ {\omega_{1}^{2} \ddot{x}_{2} - \frac{{k_{2} }}{{m_{2} }}\left( {x_{1} - x_{2} } \right) - \frac{\mu N}{{m_{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = 0.} \\ \end{array}$$
(49)

Then, dividing Eqs. (49) by \({\omega }_{1}^{2}\), the equations become:

$$\begin{array}{*{20}c} {\ddot{x}_{1} + 2\xi_{1} \dot{x}_{1} + x_{1} + r\omega_{a}^{2} \left( {x_{1} - x_{2} } \right) + \frac{\mu N}{{m_{1} \omega_{1}^{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = \frac{F}{{m_{1} \omega_{1}^{2} }},} \\ {\ddot{x}_{2} - \omega_{{\text{a}}}^{2} \left( {x_{1} - x_{2} } \right) - \frac{\mu N}{{m_{2} \omega_{1}^{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = 0.} \\ \end{array}$$
(50)

The displacement xs is introduced, it is defined as:

$$x_{s} = \sqrt {\frac{{2\pi S_{0} \omega_{1} }}{{k_{1}^{2} }}} .$$

Dividing Eqs. (50) by xs, the following equations are obtained:

$$\begin{array}{*{20}c} {\ddot{y}_{1} + 2\xi_{1} \dot{y}_{1} + y_{1} + r\omega_{{\text{a}}}^{2} \left( {y_{1} - y_{2} } \right) + \delta {\text{sign}}\left( {\dot{y}_{1} - \dot{y}_{2} } \right) = f,} \\ {\ddot{y}_{2} - \omega_{{\text{a}}}^{2} \left( {y_{1} - y_{2} } \right) - \frac{\delta }{r}{\text{sign}}\left( {\dot{y}_{1} - \dot{y}_{2} } \right) = 0.} \\ \end{array}$$
(51)

Appendix 4

For random acceleration, dividing Eqs. (32) by m1 for the first, and by m2 for the second, the equations of motion are expressed as follows:

$$\begin{array}{*{20}c} {\omega_{1}^{2} \ddot{x}_{1} + \frac{{c_{1} }}{{m_{1} }}\omega_{1} \dot{x}_{1} + \frac{{k_{1} }}{{m_{1} }}x_{1} + \frac{{k_{2} }}{{m_{1} }}\left( {x_{1} - x_{2} } \right) + \frac{\mu N}{{m_{1} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = - G,} \\ {\omega_{1}^{2} \ddot{x}_{2} - \frac{{k_{2} }}{{m_{2} }}\left( {x_{1} - x_{2} } \right) - \frac{\mu N}{{m_{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = - G.} \\ \end{array}$$
(52)

Then, dividing Eqs. (52) by \({\omega }_{1}^{2}\), the equations become:

$$\begin{array}{*{20}c} {\ddot{x}_{1} + 2\xi_{1} \dot{x}_{1} + x_{1} + r\omega_{{\text{a}}}^{2} \left( {x_{1} - x_{2} } \right) + \frac{\mu N}{{m_{1} \omega_{1}^{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = - \frac{G}{{\omega_{1}^{2} }},} \\ {\ddot{x}_{2} - \omega_{{\text{a}}}^{2} \left( {x_{1} - x_{2} } \right) - \frac{\mu N}{{m_{2} \omega_{1}^{2} }}{\text{sign}}\left( {\dot{x}_{1} - \dot{x}_{2} } \right) = - \frac{G}{{\omega_{1}^{2} }}.} \\ \end{array}$$
(53)

The displacement xs is introduced, it is defined as:

$$x_{s} = \sqrt {\frac{{2\pi S_{0} }}{{\omega_{1}^{3} }}} .$$

Now, dividing Eqs. (53) by xs, the following equations are obtained:

$$\begin{array}{*{20}c} {\ddot{y}_{1} + 2\xi_{1} \dot{y}_{1} + y_{1} + r\omega_{a}^{2} \left( {y_{1} - y_{2} } \right) + \delta {\text{sign}}\left( {\dot{y}_{1} - \dot{y}_{2} } \right) = - g,} \\ {\ddot{y}_{2} - \omega_{a}^{2} \left( {y_{1} - y_{2} } \right) - \frac{\delta }{r}{\text{sign}}\left( {\dot{y}_{1} - \dot{y}_{2} } \right) = - g.} \\ \end{array}$$
(54)

Appendix 5

The fminimax optimization as defined in the MATLAB User’s Guide and Optimization Toolbox:

$$x \, = \, f\min i\max ({\kern 1pt} Y_{1} ,x_{0} ,A,b,A_{{{\text{eq}}}} ,b_{{{\text{eq}}}} ,l_{{\text{b}}} ,u_{{\text{b}}} ).$$

All the parameters of the optimization procedure are listed in Table

Table 5 Parameters of the optimization procedure

5. There are no equality or inequality constraints in this problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, A., Mrad, C. & Nasri, R. Explicit Formulas for Optimal Parameters of Friction Dynamic Vibration Absorber Attached to a Damped System Under Various Excitations. J. Vib. Eng. Technol. 11, 85–97 (2023). https://doi.org/10.1007/s42417-022-00560-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00560-6

Keywords

Navigation