Skip to main content
Log in

Identification and Parameter Estimation of Nonlinear Damping Using Volterra Series and Multi-Tone Harmonic Excitation

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

Response characteristics of nonlinear systems have been extensively studied for system identification. But all these studies mainly employ single tone harmonic excitation. In contrast, there are very few research literatures on the use of multi-tone harmonic excitation, obviously due to the challenges in more complicated formulation of response characteristics. This research intends to identify a polynomial type of damping nonlinearity using Higher-order Frequency Response Functions (HoFRFs) and harmonic amplitude measurement data under multi-tone harmonic excitation.

Methods

In the present study, the Volterra series is employed to demonstrate benefits of using multi- tone harmonic excitation for identification of damping nonlinearity. It is shown a large number of combination tones of higher harmonics are formed in the response spectrum. Response harmonic amplitude series are formulated for these harmonics using higher order Volterra kernel synthesis for both symmetric and asymmetric forms of damping nonlinearity.

Results and conclusion

A novel parameter estimation algorithm is presented to first estimate the nonlinear parameter and then the linear modal parameters of the system using two experiments only, whereas, for single-tone harmonic excitation, one would require at least six to eight experiments. The signal strength of higher harmonics is studied for selection of most effective frequency combinations in the multi-tone excitation. Numerical simulations with a typical two-tone excitation demonstrate that fairly accurate estimates of nonlinear damping parameters and linear modal parameters can be obtained with proper selection of frequency pair and excitation level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Exhaustively included in the manuscript itself.

Code Availability

May be made available from Author on specific request.

Abbreviations

A, B:

Excitation force amplitudes

\({\beta }_{2}\) :

Second order nonlinear damping parameter

\({\beta }_{3}\) :

Third order nonlinear damping parameter

\({c}_{1}\) :

Linear damping coefficient

\({c}_{2}\) :

Square damping coefficient

\({c}_{3}\) :

Cubic damping coefficient

\(f(t)\) :

Excitation force

ξ:

Damping ratio

\({h}_{1}\left({\tau }_{1}\right)\) :

First order Volterra kernel

\({h}_{2}\left({\tau }_{1},{\tau }_{2}\right)\) :

Second order Volterra kernel

\({h}_{n}\left({\tau }_{1},{\tau }_{2},\dots ,{\tau }_{n}\right)\) :

nth order Volterra kernel

\({H}_{1}(\omega )\) :

First order Volterra kernel transform

\({H}_{2}(\omega ,\omega )\) :

Second order Volterra kernel transform

\({H}_{3}\left(\omega ,\omega ,\omega \right)\) :

Third order Volterra kernel transform

\({H}_{n}\left({\omega }_{1},{\omega }_{2},\dots ,{\omega }_{n}\right)\) :

nth Order Volterra kernel transform or Frequency Response Function

\({k}_{1}\) :

Linear stiffness coefficient

\(m\) :

Mass of the system

t :

Time

\(\tau\) :

Non-dimensional time

\({\omega }_{1}\) :

Two-tone first driving frequency

\({\omega }_{2}\) :

Two-tone second driving frequency

\({\omega }_{n}\) :

Natural frequency

\({\omega }_{p,q,s,u}\) :

General higher harmonic of \(\omega\)

\({\Omega }_{E}\) :

Non-dimensional excited frequency

\({\Omega }_{1}=\frac{{\omega }_{1}}{{\omega }_{n}}\) :

Non-dimensional two-tone first driving frequency

\({\Omega }_{2}=\frac{{\omega }_{2}}{{\omega }_{n}}\) :

Non-dimensional two-tone secnd driving frequency

x(t):

Response function

\(\dot{x}(t)\) :

Velocity of system

\(\ddot{x}\left(t\right)\) :

Acceleration of system

\(X\) :

Amplitude of system

\(X\left(m\omega \right)\) :

mth harmonic response amplitude

\(X\left(\omega \right)\) :

First harmonic amplitude

\(X\left(2\omega \right)\) :

Second harmonic amplitude

\(X\left(3\omega \right)\) :

Third harmonic amplitude

\(\eta \left(\tau \right)\) :

Non-dimensional response

\({\eta }^{\prime}\left(\tau \right)\) :

Non-dimensional Velocity

\(\eta^{\prime\prime} \left(\tau \right)\) :

Non-dimensional acceleration

\(\overline{\eta }\left(\Omega \right)\) :

Non-dimensional first harmonic amplitude

\(\overline{\eta }\left(2\Omega \right)\) :

Non-dimensional second harmonic amplitude

\(\overline{\eta }\left(3\Omega \right)\) :

Non-dimensional third harmonic amplitude

\({x}_{1}\left(t\right)\) :

First response component

\({x}_{2}\left(t\right)\) :

Second response component

\({x}_{3}\left(t\right)\) :

Third response component

\({x}\left(t\right)\) :

Total response

\(X\left({m}_{1}{\omega }_{1}+{m}_{2}{\omega }_{2}\right)\) :

Response harmonic amplitude for a Combination tone \(\left({m}_{1}{\omega }_{1}+{m}_{2}{\omega }_{2}\right)\)

\(X\left({\omega }_{1}\right)\) :

First harmonic amplitude for a driving frequency \({\omega }_{1}\)

\(X\left({\omega }_{2}\right)\) :

First harmonic amplitude for a driving frequency \({\omega }_{2}\)

\(X\left({2\omega }_{1}\right)\) :

Second harmonic amplitude for a frequency \({2\omega }_{1}\)

\(X\left(2{\omega }_{2}\right)\) :

Second harmonic amplitude for a frequency \({2\omega }_{2}\)

\(X\left({\omega }_{1}+{\omega }_{2}\right)\) :

Second harmonic amplitude for a combination tone \({(\omega }_{1}+{\omega }_{2})\)

\(X\left({\omega }_{1}-{\omega }_{2}\right)\) :

Second harmonic amplitude for a combination tone \(({\omega }_{1}-{\omega }_{2})\)

\(X\left({3\omega }_{1}\right)\) :

Third harmonic amplitude for a frequency \(3{\omega }_{1}\)

\(X\left(3{\omega }_{2}\right)\) :

Third harmonic amplitude for a frequency \(3{\omega }_{2}\)

\(X\left(2{\omega }_{1}+{\omega }_{2}\right)\) :

Third harmonic amplitude for a combination tone \(\left(2{\omega }_{1}+{\omega }_{2}\right)\)

\(X\left(2{\omega }_{1}-{\omega }_{2}\right)\) :

Third harmonic amplitude for a combination tone \(\left(2{\omega }_{1}-{\omega }_{2}\right)\)

\(X\left(2{\omega }_{2}+{\omega }_{1}\right)\) :

Third harmonic amplitude for a combination tone \(\left(2{\omega }_{2}+{\omega }_{1}\right)\)

\(X\left(2{\omega }_{2}-{\omega }_{1}\right)\) :

Third harmonic amplitude for a combination tone \(\left(2{\omega }_{2}-{\omega }_{1}\right)\)

\(\overline{\eta }\left({m}_{1}{\Omega }_{1}+{m}_{2}{\Omega }_{2}\right)\) :

Non-dimensional response harmonic amplitude for a combination tone \(\left({m}_{1}{\Omega }_{1}+{m}_{2}{\Omega }_{2}\right)\)

\(\overline{\eta }\left({\Omega }_{1}\right)\) :

Non-dimensional first harmonic amplitude for a driving frequency \({\Omega }_{1}\)

\(\overline{\eta }\left({\Omega }_{2}\right)\) :

Non-dimensional first harmonic amplitude for a driving frequency \(\left({\Omega }_{2}\right)\)

\(\overline{\eta }\left(2{\Omega }_{1}\right)\) :

Non-dimensional harmonic amplitude for a frequency \(2{\Omega }_{1}\)

\(\overline{\eta }\left(2{\Omega }_{2}\right)\) :

Non-dimensional harmonic amplitude for a frequency \(2{\Omega }_{2}\)

\(\overline{\eta }\left({\Omega }_{1}+{\Omega }_{2}\right)\) :

Non-dimensional second harmonic amplitude for a combination tone \(\left({\Omega }_{1}+{\Omega }_{2}\right)\)

\(\overline{\eta }\left({\Omega }_{1}-{\Omega }_{2}\right)\) :

Non-dimensional second harmonic amplitude for a combination tone \(\left({\Omega }_{1}-{\Omega }_{2}\right)\)

\(\overline{\eta }\left(3{\Omega }_{1}\right)\) :

Non-dimensional third harmonic amplitude for a frequency \(3{\Omega }_{1}\)

\(\overline{\eta }\left(3{\Omega }_{2}\right)\) :

Non-dimensional third harmonic amplitude for a frequency \(\left(3{\Omega }_{2}\right)\)

\(\overline{\eta }\left(2{\Omega }_{1}+{\Omega }_{2}\right)\) :

Non-dimensional third harmonic amplitude for a combination tone \(\left(2{\Omega }_{1}+{\Omega }_{2}\right)\)

\(\overline{\eta }\left(2{\Omega }_{1}-{\Omega }_{2}\right)\) :

Non-dimensional third harmonic amplitude for a combination tone \(\left(2{\Omega }_{1}-{\Omega }_{2}\right)\)

\(\overline{\eta }\left(2{\Omega }_{2}+{\Omega }_{1}\right)\) :

Non-dimensional third harmonic amplitude for a combination tone \(\left(2{\Omega }_{2}+{\Omega }_{1}\right)\)

\(\overline{\eta }\left(2{\Omega }_{2}-{\Omega }_{1}\right)\) :

Non-dimensional third harmonic amplitude for a combination tone \(\left(2{\Omega }_{2}-{\Omega }_{1}\right)\)

References

  1. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Willey, New York

    MATH  Google Scholar 

  2. Bendat JS, Palo PA, Coppolino RN (1992) A general identification technique for nonlinear differential equations of motion. Probab Eng Mech 7(1):43–61. https://doi.org/10.1016/0266-8920(92)90008-6

    Article  Google Scholar 

  3. Tiwari R, Vyas NS (1995) Estimation of nonlinear stiffness parameters of rolling element bearings from random response of rotor bearing systems. J Sound Vib 187(2):229–239. https://doi.org/10.1006/jsvi.1995.0517

    Article  Google Scholar 

  4. Balachandran B, Nayfeh AH, Smith SW, Pappa RS (1994) Identification of nonlinear interactions in structures. AIAA J Guid Control Dyn 17(2):257–262. https://doi.org/10.2514/3.21191

    Article  Google Scholar 

  5. Khan KA, Balachandran B (1997) Bispectral analyses of interactions in quadratically and cubically coupled oscillators. Mech Res Commun 24(5):545–550. https://doi.org/10.1016/S0093-6413(97)00060-8

    Article  MATH  Google Scholar 

  6. Bikdash M, Balachandran B, Nayfeh AH (1994) Melnikov analysis for a ship with a general roll-damping model. Nonliear Dyn 6:101–124. https://doi.org/10.1007/BF00045435

    Article  Google Scholar 

  7. Volterra V (1958) Theory of functionals and integral integro-differential equations. Dover Publications Inc, New York

    Google Scholar 

  8. George DA (1959) Continuous nonlinear systems. MIT RLE Tech Rep 355.

  9. Boyd S, Chua L (1985) Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circ Syst 32(11):1150–1161. https://doi.org/10.1109/TCS.1985.1085649

    Article  MathSciNet  MATH  Google Scholar 

  10. Bedrosian E, Rice SO (1971) The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. Proc IEEE 59(12):1688–1707. https://doi.org/10.1109/PROC.1971.8525

    Article  MathSciNet  Google Scholar 

  11. Worden K, Manson G, Tomlinson GR (1997) A harmonic probing algorithm for the multi-input Volterra series. J Sound Vib 201(1):67–84. https://doi.org/10.1006/jsvi.1996.0746

    Article  MathSciNet  MATH  Google Scholar 

  12. Marmarelis PZ, Naka KI (1974) Identification of multi-input biological systems. IEEE Trans Biomed Eng 21(2):88–101. https://doi.org/10.1109/TBME.1974.324293

    Article  Google Scholar 

  13. Boaghe OM, Billings SA (2003) Subharmonic oscillation modelling MISO Volterra series. IEEE Trans Circ Syst I Fund Theory Appl 50(7):874–884. https://doi.org/10.1109/TCSI.2003.813965

    Article  MATH  Google Scholar 

  14. Rugh WJ (1981) Nonlinear system theory—The Volterra/Wiener approach. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  15. Schetzen M (1980) The Volterra and wiener theories of nonlinear systems. Wiley, New York

    MATH  Google Scholar 

  16. Chatterjee A, Vyas NS (2003) Nonlinear parameter estimation with Volterra series using the method of recursive iteration through harmonic probing. J Sound Vib 268(4):657–678. https://doi.org/10.1016/S0022-460X(02)01537-7

    Article  Google Scholar 

  17. Chatterjee A (2010) Identification and parameter estimation of a bilinear oscillator using Volterra series with harmonic probing. Int J Non Linear Mech 45(1):12–20. https://doi.org/10.1016/j.ijnonlinmec.2009.08.007

    Article  Google Scholar 

  18. Cheng CM, Peng MK, Zhang WM, Meng G (2017) Volterra-series-based nonlinear system modelling and its engineering applications: a state-of-the-art review. Mech Syst Signal Process 87:340–364. https://doi.org/10.1016/j.ymssp.2016.10.029

    Article  Google Scholar 

  19. Noel JP, Kerschen G (2017) Nonlinear system identification in structural dynamics: 10 more years of progress. Mech Syst Signal Process 83:2–35. https://doi.org/10.1016/j.ymssp.2016.07.020

    Article  Google Scholar 

  20. Cveticanin L (2011) Oscillators with nonlinear elastic and damping forces. Comput Math with Appl 62(4):1745–1757. https://doi.org/10.1016/j.camwa.2011.06.016

    Article  MathSciNet  MATH  Google Scholar 

  21. Detroux T, Renson L, Kerschen G (2014) The harmonic balance method for advanced analysis and design of nonlinear mechanical systems. In: Kerschen G (eds) Nonlinear Dynamics, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04522-1_3

  22. Xu L, Lu MW, Cao Q (2002) Nonlinear vibrations of dynamical systems with a general form of piecewise-linear viscous damping by incremental Harmonic Balance Method. Phys Lett A 301(1–2):65–73. https://doi.org/10.1016/S0375-9601(02)00960-X

    Article  MathSciNet  MATH  Google Scholar 

  23. Peng ZK, Meng G, Lang ZQ, Zhang WM, Chu FL (2012) Study of the effects of cubic nonlinear damping on vibration isolations using Harmonic Balance Method. Int J Non Linear Mech 47(10):1073–1080. https://doi.org/10.1016/j.ijnonlinmec.2011.09.013

    Article  Google Scholar 

  24. Elliott SJ, Tehrani MG, Langley RS (2015) Nonlinear damping and quasi-linear modelling. Philos Trans R Soc A Math Phys Eng Sci 373:20140402. https://doi.org/10.1098/rsta.2014.0402

    Article  MathSciNet  MATH  Google Scholar 

  25. Lang ZQ, Billings SA (2005) Energy transfer properties of non-linear systems in the frequency domain. Int J Control 78(5):345–362. https://doi.org/10.1080/00207170500095759

    Article  MathSciNet  MATH  Google Scholar 

  26. Lang ZQ, Billings SA, Yue R, Li J (2007) Output frequency response function of nonlinear Volterra systems. Automatica 43(5):805–816. https://doi.org/10.1016/j.automatica.2006.11.013

    Article  MathSciNet  MATH  Google Scholar 

  27. Peng J, Tang J, Chen Z (2004) Parameter identification of weakly nonlinear vibration system in frequency domain. Shock Vib 11(5–6):685–692. https://doi.org/10.1155/2004/634785

    Article  Google Scholar 

  28. Ho C, Lang ZQ, Billings SA (2014) A frequency domain analysis of the effects of nonlinear damping on the Duffing equation. Mech Syst Signal Process 45(1):49–67. https://doi.org/10.1016/j.ymssp.2013.10.027

    Article  Google Scholar 

  29. Zhang B, Billings SA (2017) Volterra series truncation and kernel estimation of nonlinear systems in the frequency domain. Mech Syst Signal Process 84(1):39–57. https://doi.org/10.1016/j.ymssp.2016.07.008

    Article  Google Scholar 

  30. Laalej H, Lang ZQ, Daley S et al (2012) Application of non-linear damping to vibration isolation: an experimental study. Nonliear Dyn 69:409–421. https://doi.org/10.1007/s11071-011-0274-1

    Article  Google Scholar 

  31. Lin RM, Ng TY (2018) A new method for the accurate measurement of higher-order frequency response functions of nonlinear structural systems. ISA Trans 81:270–285. https://doi.org/10.1016/j.isatra.2018.05.015

    Article  Google Scholar 

  32. Adhikari S, Woodhouse J (2001) Identification of damping: part 2 non-viscous damping. J Sound Vib 243(1):63–88. https://doi.org/10.1006/jsvi.2000.3392

    Article  Google Scholar 

  33. Xiao Z, Jing X, Cheng L (2013) The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitation. J Sound Vib 332(5):1335–1354. https://doi.org/10.1016/j.jsv.2012.11.001

    Article  Google Scholar 

  34. Shum KM (2015) Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load. J Sound Vib 346:70–80. https://doi.org/10.1016/j.jsv.2015.02.003

    Article  Google Scholar 

  35. Habib G, Cirillo GI, Kerschen G (2018) Isolated resonances and nonlinear damping. Nonlinear Dyn 93:979–994. https://doi.org/10.1007/s11071-018-4240-z

    Article  MATH  Google Scholar 

  36. Chatterjee A, Chintha HP (2020) Identification and parameter estimation of cubic nonlinear damping using harmonic probing and volterra series. Int J Non Linear Mech 125:103518. https://doi.org/10.1016/j.ijnonlinmec.2020.103518

    Article  Google Scholar 

  37. Chatterjee A, Chintha HP (2021) Identification and parameter estimation of asymmetric nonlinear damping in a single-degree-of freedom system using volterra series. J Vib Eng Technol 9:817–843. https://doi.org/10.1007/s42417-020-00266-7

    Article  Google Scholar 

  38. Silveira M, Wahi P, Fernandes JCM (2019) Exact and approximate analytical solutions of oscillator with piecewise linear asymmetrical damping. Int J Non Linear Mech 110:115–122. https://doi.org/10.1016/j.ijnonlinmec.2018.12.007

    Article  Google Scholar 

  39. Chatterjee A (2010) Parameter estimation of duffing oscillator using Volterra series and multi-tone excitation. Int J Non Linear Mech 52(12):1716–1722. https://doi.org/10.1016/j.ijmecsci.2010.09.005

    Article  Google Scholar 

  40. Chintha HP, Chatterjee A (2022) Identification and parameter estimation of non-polynomial forms of damping nonlinearity in dynamic systems. Int J Non Linear Mech 143:104017. https://doi.org/10.1016/j.ijnonlinmec.2022.104017

    Article  Google Scholar 

  41. Chatterjee A, Vyas N (2002) Non-linear parameter estimation using Volterra series with multi-tone excitation. In: XXIMAC Proceedings of the 20th International Model Analysis Conference, Los Angeles CA (pp. 880–885)

  42. Ewins DJ (1984) Modal testing: theory and practice. Research Studies Press, Baldock

    Google Scholar 

Download references

Funding

No funding received in connection with this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Prasad Chintha.

Ethics declarations

Conflict of interest

None.

Appendix-A: Synthesis of Higher Order FRFs

The Volterra series response representation for a general nonlinear system under multi-tone harmonic excitation is given by

$${x}_{n}\left(t\right) ={x}_{1}\left(t\right)+{x}_{2}\left(t\right)+\dots = \quad \sum_{n=1}^{\infty }\frac{1}{{2}^{n}}\sum {A}^{p+q}{B}^{s+u}{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right){e}^{j{\omega }_{p,q,s,u}t}$$
(A.1)
$$x\left(t\right)=\sum_{n=1}^{\infty }\frac{1}{{2}^{n}}\sum {A}^{p+q}{B}^{s+u}{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right){e}^{j{\omega }_{p,q,s,u}t}$$
(A.2)

Then the response series in velocity \(\dot{x}(t)\) becomes

$$\dot{x}\left(t\right)=\sum_{n=1}^{\infty }\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}\sum_{p+q+s+u=n}^{j}{\omega }_{p,q,s,u}{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right){e}^{j{\omega }_{p,q,s,u}t}$$
(A.3)

where \(H_n^{p,q,s,u}\left( \omega \right) = {H_n}\left( {\underbrace {{\omega _1} \ldots }_{p\;times},\underbrace { - {\omega _1} \ldots }_{q\;times},\underbrace {{\omega _2} \ldots }_{s\;times},\underbrace { - {\omega _2} \ldots }_{u\;times},} \right)\)

$${\omega }_{p,q,s,u}=\left(p-q\right){\omega }_{1}+\left(s-u\right){\omega }_{2}$$

\({C}_{p,q,s,u}=\frac{n!}{p!q!s!u!}\), where \(n=p+q+s+u\)

Now, for a general polynomial nonlinearity up to cubic term for multi-tone excitation, equation of motion becomes

$$m\ddot{x}\left(t\right)+{c}_{1}\dot{x}\left(t\right)+{c}_{2}{\dot{x}}^{2}\left(t\right)+{c}_{3}{\dot{x}}^{3}\left(t\right){k}_{1}x\left(t\right)+{k}_{2}{x}^{2}\left(t\right)+{k}_{3}{x}^{3}(t)=A\,\,\mathrm{cos}\,\,\left({\omega }_{1}t\right)+B\,\,\mathrm{cos}\,\,\left({\omega }_{2}t\right)$$
(A.4)

Substituting Eqs. (A.1A.3) in Eq. (A.4), one obtains

$$\sum_{n=1}^{\infty }\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}\sum_{p+q+s+u=n}^{j}{ C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right){e}^{j{\omega }_{p,q,s,u}t}\left[-m{\omega }_{p,q,s,q}^{2}+{k}_{1}+j{c}_{1}{\omega }_{p,q,s,u}\right]$$
$$+{k}_{2}{\left[\sum_{n=1}^{\infty }\frac{1}{{2}^{n}}\sum {A}^{p+q}{B}^{s+u}{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right){e}^{j{\omega }_{p,q,s,u}t}\right]}^{2}$$
$$+{k}_{3}{\left[\sum_{n=1}^{\infty }\frac{1}{{2}^{n}}\sum {A}^{p+q}{B}^{s+u}{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right){e}^{j{\omega }_{p,q,s,u}t}\right]}^{3}+{c}_{2}{\left[\sum_{n=1}^{\infty }\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}\sum_{p+q+s+u=n}^{j}{\omega }_{p,q,s,u}{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right){e}^{j{\omega }_{p,q,s,u}t}\right]}^{2}$$
$$+{c}_{3}{\left[\sum_{n=1}^{\infty }\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}\sum_{p+q+s+u=n}^{j}{\omega }_{p,q,s,u}{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right){e}^{j{\omega }_{p,q,s,u}t}\right]}^{3}=\frac{A}{2} \left({e}^{j{\omega }_{1}t}+{e}^{-j{\omega }_{1}t}\right)+\frac{B}{2}\left({e}^{j{\omega }_{2}t}+{e}^{-j{\omega }_{2}t}\right)$$
(A.5)

Equating coefficients of \(\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}{e}^{j{\omega }_{p,q,s,u}t}\) both sides in Eq. (A.5), n = 1,2,3…., one obtains

$$H_{1} \left( {\omega_{1} } \right) = \frac{1}{{\left( { - m\omega_{1}^{2} + k_{1} + jc_{1} \omega_{1} } \right)}},{\text{for}}\,\, n = { 1}$$
(A.6)
$$H_{1} \left( {\omega_{2} } \right) = \frac{1}{{\left( { - m\omega_{2}^{2} + k_{1} + jc_{1} \omega_{2} } \right)}},{\text{for}}\,\, n = { 1}$$
(A.7)

For n > 1,

Coefficient of \(\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}{e}^{j{\omega }_{p,q,s,u}t}\) in first line of Eq. (A.5) is

$${C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right)\left[-m{\omega }_{p,q,s,q}^{2}+{k}_{1}+j{c}_{1}{\omega }_{p,q,s,u}\right]=\frac{{ C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right)}{{H}_{1}({\omega }_{p,q,s,u})}$$

Coefficient of \(\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}{e}^{j{\omega }_{p,q,s,u}t}\) in second line of Eq. (A.5) is

$${k}_{2}\sum \left\{{C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}$$

such that, \({p}_{1}+{q}_{1}+{s}_{1}+{u}_{1}={n}_{1},\; {p}_{2}+{q}_{2}+{s}_{2}+{u}_{2}={n}_{2}\) and \({n}_{1}+{n}_{2}=n\)

Coefficient of \(\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}{e}^{j{\omega }_{p,q,s,u}t}\) in third line of Eq. (A.5) is

$${k}_{3}\sum \left\{{C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}\left\{{C}_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{H}_{{n}_{3}}^{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}\left(\omega \right)\right\}$$

such that, \({p}_{1}+{q}_{1}+{s}_{1}+{u}_{1}={n}_{1}, {p}_{2}+{q}_{2}+{s}_{2}+{u}_{2}={n}_{2}, {p}_{3}+{q}_{3}+{s}_{3}+{u}_{3}={n}_{3}\) and \({n}_{1}+{n}_{2}+{n}_{3}=n\).

Coefficient of \(\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}{e}^{j{\omega }_{p,q,s,u}t}\) in fourth line of Eq. (A.5) is

$${c}_{2}\sum \left\{{j{\omega }_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{j{\omega }_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}$$

such that, \({p}_{1}+{q}_{1}+{s}_{1}+{u}_{1}={n}_{1}, {p}_{2}+{q}_{2}+{s}_{2}+{u}_{2}={n}_{2}\) and \({n}_{1}+{n}_{2}=n\)

$${p}_{1}+{p}_{2}=p, {q}_{1}+{q}_{2}=q, {s}_{1}+{s}_{2}=s, and\,\, {u}_{1}+{u}_{2}=u$$

Coefficient of \(\frac{1}{{2}^{n}}{A}^{p+q}{B}^{s+u}{e}^{j{\omega }_{p,q,s,u}t}\) in fifth line of Eq. (A.5) is

$${c}_{3}\sum \left[\begin{array}{c}\left\{{j{\omega }_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{j{\omega }_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}\\ \left\{j{\omega }_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{C}_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{H}_{{n}_{3}}^{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}\left(\omega \right)\right\}\end{array}\right]$$

such that, \({p}_{1}+{q}_{1}={n}_{1}, {p}_{2}+{q}_{2}={n}_{2}, {p}_{3}+{q}_{3}={n}_{3}\) and \({n}_{1}+{n}_{2}+{n}_{3}=n\)

$${p}_{1}+{p}_{2}+{p}_{3}=p, {q}_{1}+{q}_{2}+{q}_{3}=q, {s}_{1}+{s}_{2}+{s}_{3}=s, \mathrm{and} {u}_{1}+{u}_{2}+{u}_{3}=u$$

Sum of all these terms coming from LHS of Eq. (A.5) will be zero as there is no such term on the RHS for n > 1. Therefore,

$$\begin{aligned}\frac{{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right)}{{H}_{1}({\omega }_{p,q,s,u})}+{k}_{2}\sum \left\{{C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}\\+{k}_{3}\sum \left\{{C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}\left\{{C}_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{H}_{{n}_{3}}^{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}\left(\omega \right)\right\}\\+{c}_{2}\sum \left\{{j{\omega }_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{j{\omega }_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}\\+{c}_{3}\sum \left[\begin{array}{c}\left\{{j{\omega }_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{j{\omega }_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}\\ \left\{j{\omega }_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{C}_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{H}_{{n}_{3}}^{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}\left(\omega \right)\right\}\end{array}\right]=0 \end{aligned}$$
(A.8)

This gives,

$$\frac{{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right)}{{H}_{1}({\omega }_{p,q,s,u})}=-\left[{k}_{2}\sum_{\begin{array}{c}{p}_{i}+{q}_{i}+{s}_{i}+{u}_{i}={n}_{i}\\ {n}_{1}+{n}_{2}=n\end{array}}\sum \left\{{C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}+{k}_{3}\sum_{\begin{array}{c}{p}_{i}+{q}_{i}+{s}_{i}+{u}_{i}={n}_{i}\\ {n}_{1}+{n}_{2}+{n}_{3}=n\end{array}}\left\{{C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}\left\{{C}_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{H}_{{n}_{3}}^{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}\left(\omega \right)\right\}\right]$$
$$-\left[{c}_{2}\sum_{\begin{array}{c}{p}_{i}+{q}_{i}+{s}_{i}+{u}_{i}={n}_{i}\\ {n}_{1}+{n}_{2}=n\end{array}}\left\{{j{\omega }_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{j{\omega }_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}+{c}_{3}\sum_{\begin{array}{c}{p}_{i}+{q}_{i}+{s}_{i}+{u}_{i}={n}_{i}\\ {n}_{1}+{n}_{2}+{n}_{3}=n\end{array}}\left[\begin{array}{c}\left\{{j{\omega }_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{j{\omega }_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}\\ \left\{j{\omega }_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{C}_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{H}_{{n}_{3}}^{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}\left(\omega \right)\right\}\end{array}\right]\right]$$
(A.9)

Synthesis of \({H}_{2}\left(\omega ,\omega \right)\) and \({H}_{3}\left(\omega ,\omega ,\omega \right)\) for damping nonlinearity with square and cubic terms.

If coefficients of nonlinear stiffness \({k}_{2}={k}_{3}=0\) then, Eq. (A.9) becomes

$$\frac{{C}_{p,q,s,u}{H}_{n}^{p,q,s,u}\left(\omega \right)}{{H}_{1}({\omega }_{p,q,s,u})}=-\left[{c}_{2}\sum_{\begin{array}{c}{p}_{i}+{q}_{i}+{s}_{i}+{u}_{i}={n}_{i}\\ {n}_{1}+{n}_{2}=n\end{array}}\left\{{j{\omega }_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{j{\omega }_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}+{c}_{3}\sum_{\begin{array}{c}{p}_{i}+{q}_{i}+{s}_{i}+{u}_{i}={n}_{i}\\ {n}_{1}+{n}_{2}+{n}_{3}=n\end{array}}\left[\begin{array}{c}\left\{{j{\omega }_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}C}_{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}{H}_{{n}_{1}}^{{p}_{1},{q}_{1},{s}_{1},{u}_{1}}\left(\omega \right)\right\}\left\{j{\omega }_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{C}_{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}{H}_{{n}_{2}}^{{p}_{2},{q}_{2},{s}_{2},{u}_{2}}\left(\omega \right)\right\}\\ \left\{j{\omega }_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{C}_{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}{H}_{{n}_{3}}^{{p}_{3},{q}_{3},{s}_{3},{u}_{3}}\left(\omega \right)\right\}\end{array}\right]\right]$$
(A.10)

Appendix-B: List of Symbols

The symbols and description listed in “List of symbols”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chintha, H.P., Chatterjee, A. Identification and Parameter Estimation of Nonlinear Damping Using Volterra Series and Multi-Tone Harmonic Excitation. J. Vib. Eng. Technol. 10, 2217–2239 (2022). https://doi.org/10.1007/s42417-022-00535-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00535-7

Keywords

Navigation