Skip to main content
Log in

Fault Diagnosis of Bearing Based on Improved Refined Composite Hierarchical Fuzzy Entropy and Least Squares Support Vector Machine

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

To improve the recognition accuracy of the existing fuzzy entropy method for bearing fault signals, a novel processing method by combining improved refined composite hierarchical fuzzy entropy (IRCHFE) and least square support vector machine (LSSVM) is proposed.

Methods

In this method, an improved refined composite hierarchical analysis applies to solve the problems of incomplete extraction of the existing multi-scale fuzzy entropy (MFE) fault information, inaccurate estimation of the entropy value of the hierarchical fuzzy entropy (HFE), and the inability of the hierarchical analysis to handle arbitrary data lengths. First, the IRCHFE method applies to extract fault information from the vibration signal. Then, LSSVM effectively recognizes and classifies the extracted fault information. Furthermore, the application of PSO to adjust the parameters of LSSVM increase classification accuracy.

Results

The superiority of the IRCHFE-LSSVM method is verified by the bearing experimental data of Case Western Reserve University and Paderborn University. The experimental results show that the IRCHFE-LSSVM has a fault recognition accuracy of 100%. The comparative experiment results display that the proposed IRCHFELSSVM method is superior to MFE-LSSVM and HFE-LSSVM in identifying bearing fault types.

Conclusions

The combined method of IRCHFE and LSSVM for fault diagnosis can provide certain guidance for the engineering application of fault diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ApEn:

Approximate entropy

EMD:

Empirical mode decomposition

FE:

Fuzzy entropy

HFE:

Hierarchical fuzzy entropy

IRCHFE:

Improved refined composite hierarchical fuzzy entropy

LSSVM:

Least square support vector machine

MFE:

Multi-scale fuzzy entropy

MF:

Morphological filtering

SampEn:

Sample entropy

SVM:

Support vector machines

PCA:

Principal component analysis

PSO:

Particle swarm optimization

WT:

Wavelet transform

References

  1. Patel J, Upadhyay S (2016) Comparison between artificial neural network and support vector method for a fault diagnostics in rolling element bearings. Procedia Eng 144:390–397. https://doi.org/10.1007/s41660-021-00163-w

    Article  Google Scholar 

  2. Jaber A, Bicker R (2014) The optimum selection of wavelet transform parameters for the purpose of fault detection in an industrial robot. In: 2014 IEEE international conference on control system. computing and engineering (ICCSCE), pp 304–309. https://doi.org/10.1109/ICCSCE.2014.7072735

  3. Mohammed OA, Abed NY, Ganu SC (2006) Modeling and characterization of induction motor internal faults using finite-element and discrete wavelet transforms. IEEE Trans Magn 42(10):3434–3436. https://doi.org/10.1109/TMAG.2006.879091

    Article  Google Scholar 

  4. Nlkolaou NG, Antoniadis IA (2003) Application of morphological operators as envelope extractors for impulsive-type periodic signals. Mech Syst Signal Process 17(6):1147–1162. https://doi.org/10.1006/mssp.2002.1576

    Article  Google Scholar 

  5. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454:903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  6. Niu Y, Fei J, Li Y et al (2020) A novel fault diagnosis method based on EMD, cyclostationary, SK and TPTSR. J Mech Sci Technol 34:1925–1935. https://doi.org/10.1007/s12206-020-0414-y

    Article  Google Scholar 

  7. Zhang K, Lin T, Jin X (2019) Low speed bearing fault diagnosis based on EMD-CIIT histogram entropy and KFCM clustering. J Shanghai Jiaotong Univ 24:616–621. https://doi.org/10.1007/s12204-019-2108-0

    Article  Google Scholar 

  8. Li Y, Gao Q, Li P et al (2021) Fault diagnosis of rolling bearing using a refined composite multiscale weighted permutation entropy. J Mech Sci Technol 35:1893–1907. https://doi.org/10.1007/s12206-021-0408-4

    Article  Google Scholar 

  9. Zhao J, Liu Y (2018) Approximate entropy based on Hilbert transform and its application in bearing fault diagnosis. In: 2018 international conference on sensing,diagnostics, prognostics, and control (SDPC), 2018, pp 41–44. https://doi.org/10.1109/SDPC.2018.8665015

  10. Zhong XY, Zhao CH, Dong HJ, Liu XM, Zeng LC (2013) Rolling bearing fault diagnosis using sample entropy and 1.5 dimension spectrum based on EMD. Appl Mech Mater 278:1027–1031. https://www.scientific.net/AMM.278-280.1027

  11. Zhang L, Xiong G, Liu H (2010) Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst Appl 37:6077–6085. https://doi.org/10.1016/j.eswa.2010.02.118

    Article  Google Scholar 

  12. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039

    Article  Google Scholar 

  13. Chen W, Zhuang J, Yu W, Wang Z (2009) Measuring complexity using FuzzyEn, ApEn, and SampEn. Med Eng Phys 31(1):61–68. https://doi.org/10.1016/j.medengphy.2008.04.005

    Article  Google Scholar 

  14. Zheng JD, Cheng JS, Yang Y (2013) A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy. Mech Mach Theory 70:441–453. https://doi.org/10.1016/j.mechmachtheory.2013.08.014

    Article  Google Scholar 

  15. Zhu K, Chen L, Hu X (2019) A multi-scale fuzzy measure entropy and infinite feature selection based approach for rolling bearing fault diagnosis. J Nondestruct Eval 38:90. https://doi.org/10.1007/s10921-019-0623-4

    Article  Google Scholar 

  16. Li Yongbo, Minqiang Xu, Wang Rixin, Huang Wenhu (2016) A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J Sound Vib 360:277–299. https://doi.org/10.1016/j.jsv.2015.09.016

    Article  Google Scholar 

  17. Li Yongbo, Minqiang Xu, Zhao Haiyang, Huang Wenhu (2016) Hierarchical fuzzy entropy and improved support vector machine based binary tree approach for rolling bearing fault diagnosis. Mech Mach Theory 98:114–132. https://doi.org/10.1016/j.mechmachtheory.2015.11.010

    Article  Google Scholar 

  18. Yang Y, Zheng H, Li Y, Xu M, Chen Y (2019) A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network. ISA Trans 91:235–252. https://doi.org/10.1016/j.isatra.2019.01.018

    Article  Google Scholar 

  19. Zheng J, Tu D, Pan H, Hu X, Liu T, Liu Q (2017) A refined composite multivariate multiscale fuzzy entropy and Laplacian score-based fault diagnosis method for rolling bearings. Entropy 19(11):585–601. https://doi.org/10.3390/e19110585

    Article  Google Scholar 

  20. Wei Yu, Yang Yuantao, Minqiang Xu, Huang Wenhu (2021) Intelligent fault diagnosis of planetary gearbox based on refined composite hierarchical fuzzy entropy and random forest. ISA Trans 109:340–351. https://doi.org/10.1016/j.isatra.2020.10.028

    Article  Google Scholar 

  21. Zhou Fuming, Gong Jiancheng, Yang Xiaoqiang, Han Tao, Zhongkang Yu (2021) A new gear intelligent fault diagnosis method based on refined composite hierarchical fluctuation dispersion entropy and manifold learning. Measurement 186:110136. https://doi.org/10.1016/j.measurement.2021.110136

    Article  Google Scholar 

  22. Yang BS, Di X, Han T (2008) Random forests classifier for machine fault diagnosis. J Mech Sci Technol 22(9):1716–1725. https://doi.org/10.1007/s12206-008-0603-6

    Article  Google Scholar 

  23. Lin M, Huang D, Zhao L et al (2019) An improved fault diagnosis method based on a genetic algorithm by selecting appropriate IMFs. IEEE Access 7:60310–60321. https://doi.org/10.1109/ACCESS.2019.2915366

    Article  Google Scholar 

  24. Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300. https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  25. Chen Weiting, Zhuang Jun, Wangxin Yu, Wang Zhizhong (2009) Measuring complexity using FuzzyEn, ApEn, and SampEn. Med Eng Phys 31:61–68. https://doi.org/10.1016/j.medengphy.2008.04.005

    Article  Google Scholar 

  26. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89(6):068102. https://doi.org/10.1103/PhysRevLett.89.068102

    Article  Google Scholar 

  27. Ma S, Chen M, Wu J, Wang Y, Jia B, Jiang Y (2018) Intelligent fault diagnosis of HVCB with feature space optimization-based random forest. Sensors 18(4):1221. https://doi.org/10.3390/s18041221

    Article  Google Scholar 

  28. Zhou S (2015) Sparse LSSVM in primal using Cholesky factorization for large-scale problems. IEEE Trans Neural Netw Learn Syst 27(4):783–795. https://doi.org/10.1109/TNNLS.2015.2424684

    Article  MathSciNet  Google Scholar 

  29. Xiong Q, Xu Y, Peng Y et al (2017) Low-speed rolling bearing fault diagnosis based on EMD denoising and parameter estimate with alpha stable distribution. J Mech Sci Technol 31:1587–1601. https://doi.org/10.1007/s12206-017-0306-y

    Article  Google Scholar 

  30. Mahmood A, Khan S, Hussain S et al (2019) An adaptive image contrast enhancement technique for low-contrast images. IEEE Access 7:161584–161593. https://doi.org/10.1109/ACCESS.2019.2951468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hq., Yuan, Ly. Fault Diagnosis of Bearing Based on Improved Refined Composite Hierarchical Fuzzy Entropy and Least Squares Support Vector Machine. J. Vib. Eng. Technol. 10, 3025–3036 (2022). https://doi.org/10.1007/s42417-022-00534-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00534-8

Keywords

Navigation