Skip to main content
Log in

Static, Buckling and Vibration Response Analysis of Three-Layered Functionally Graded Piezoelectric Plate under Thermo-Electric Mechanical Environment

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The static, buckling, and vibration response of the hybrid ceramic–metal plate, in which properties vary as a Power–law (P-) and Sigmoid law (S-) based distribution subjected to thermo-electro-mechanical loading, has been analyzed.

Methods

The governing equations of motion obtained using first-order shear deformation theory (FSDT) with von-Karman displacement field and the principle of virtual displacements for the hybrid ceramic–metal plate is solved by the nine-node interpolation function with seven degrees of freedom using the finite element method.

Results

It has been observed that the Dimensionless centerline deflection and the stresses of hybrid ceramic-metal plates increase when the temperature difference increases from \(\Delta T = 0{\text{K}}\) to \(\Delta T = 100{\text{K}}\) and with an increase in the volume fraction exponent (\(p\)). There is an increase in the dimensionless frequency and the critical buckling load factor as the boundary condition changes from SSSS to CCCC.

Conclusions

The obtained results are essential for the functionally graded thermoelectric piezoelectric-based smart structures under different operating conditions like thermoelectric and piezoelectric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Koizumi M (1997) FGM activities in Japan. Compos Part B 28:1–4

    Article  Google Scholar 

  2. Bao G, Wang L (1995) Multiple cracking in functionally graded ceramic/metal coatings. Int J Solids Struct 32:2853–2871

    Article  MATH  Google Scholar 

  3. Chung YL, Chi SH (2001) The residual stress of functionally graded materials. J Chin Inst Civil Hydraul Eng 13:1–9

    Google Scholar 

  4. Reddy JN (2007) Theory and analysis of elastic plates and shells. CRC Press, Boca Raton

    Google Scholar 

  5. Tiersten HF (1969) Linear Piezoelectric Plate Vibrations. Plenum Publishing Corporation, New York

    Book  Google Scholar 

  6. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  7. Huang X-L, Shen H-S (2006) Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. J Sound Vib 289:25–53

    Article  Google Scholar 

  8. He XQ, Ng TY, Sivashanker S, Liew KM (2001) Active control of FGM plates with integrated piezoelectric sensors and actuators. Int J Solids Struct 38:1641–1655

    Article  MATH  Google Scholar 

  9. Dimitris V, Dimitris S (2009) Coupled finite element for the nonlinear dynamic response of active piezoelectric plates under thermo-electro-mechanical loads. J Mech Mater Struct 4:7–8

    Google Scholar 

  10. Nourmohammadi H, Behjat B (2017) Optimum response of functionally graded piezoelectric plates in thermal environments. Mater Sci-Pol 35(3):606–617

    Article  Google Scholar 

  11. Thai HT, Choi DH (2013) A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates. Compos Struct 101:332e40

    Article  Google Scholar 

  12. Matsunaga H (2008) Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Compos Struct 82(4):499e512

    Article  Google Scholar 

  13. Huang XL, Shen HS (2004) Nonlinear Vibration and dynamic response of functionally graded plates in thermal environments. Int J Solids Struct 41:2403–2427

    Article  MATH  Google Scholar 

  14. Behjat B, Salehi M, Armin A, Sadighi M, Abbasi M (2011) Static and dynamic analysis of functionally graded piezoelectric plates under mechanical and electrical loading. Sci Iran Trans B: Mech Eng 18:986–994

    Article  Google Scholar 

  15. Zenkour AM (2006) ‘Generalized shear deformation theory for bending analysis of functionally graded plates.’ Appl Math Model 30:67–84

    Article  MATH  Google Scholar 

  16. Jiashi Y (2005) An introduction to the theory of piezoelectricity. Springer, New York

    MATH  Google Scholar 

  17. Javaheri R, Eslami MR (2002) Thermal buckling of functionally graded plates. AIAA J 40:162–169

    Article  MATH  Google Scholar 

  18. Wang BL, Noda N (2001) ‘Design of a smart functionally graded thermo piezoelectric.’ Smart Mater Struct 10:189–193

    Article  Google Scholar 

  19. Xiang HJ, Shi ZF (2009) ‘Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load.’ Eur J Mech A Solids 28:338–346

    Article  MATH  Google Scholar 

  20. Lee YY, Zhao X, Liew KM (2009) Thermoelastic analysis of functionally graded plates using the element-free kp-Ritz method. Smart Mater Struct 18(3):035007

    Article  Google Scholar 

  21. Gilhooley DF, Batra RC, Xiao JR, McCarthy MA, Gillespie JW (2007) Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Compos Struct 80(4):539–552

    Article  MATH  Google Scholar 

  22. Reddy JN (2002) Energy principles and variational methods in applied mechanics. Wiley, New York

    Google Scholar 

  23. Liew KM, Yang J, Kitipornchai S (2003) Post buckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. Int J Solids Struct 40(15):3869–3892

    Article  MATH  Google Scholar 

  24. Reddy JN, Cheng ZQ (2001) Three-dimensional solutions of smart functionally graded plates. J Appl Mech-Trans ASME 68(2):234–241

    Article  MATH  Google Scholar 

  25. Aydogdu M (2008) Conditions for functionally graded plates to remain flat under in-plane loads by classical plate theory. Compos Struct 82(1):155–157

    Article  MathSciNet  Google Scholar 

  26. Naderi A, Saidi AR (2010) on the pre-buckling configuration of functionally graded Mindlin rectangular plates. Mech Res Commun 37(6):535–538

    Article  MATH  Google Scholar 

  27. Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free Vibration. Int J Solids Struct 42:5243–5258

    Article  MATH  Google Scholar 

  28. Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part-1, deflection and stresses. Int J Solids Struct 42:5224–5242

    Article  MATH  Google Scholar 

  29. Singh SJ, Harsha SP (2019) Buckling analysis of FGM plates under uniform, linear and nonlinear in-plane loading. J Mech Sci Technol 33(4):1761–1767

    Article  Google Scholar 

  30. Singh SJ, Harsha SP (2020) Nonlinear vibration analysis of sigmoid functionally graded sandwich plate with ceramic-FGM-metal layers. J Vib Eng Technol 8:67–84

    Article  Google Scholar 

  31. Lanhe W (2004) Thermal buckling of a simply supported moderately thick rectangular FGM plates. Compos Struct 64:211–218

    Article  Google Scholar 

  32. Yaghoobi H, Fereidoon A, Nouri MK, Mareishi S (2015) Thermal buckling analysis of piezoelectric functionally graded plates with temperature-dependent properties. Mech Adv Mater Struct 22(10):864–875

    Article  Google Scholar 

  33. Doroushi A, Eslami MR, Komeili A (2011) Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory. J Intell Mater Syst Struct 22(3):231–243

    Article  Google Scholar 

  34. Bodaghi M, Saidi AR (2011) Thermoelastic buckling behavior of thick functionally graded rectangular plates. Arch Appl Mech 81:1555–1572

    Article  MATH  Google Scholar 

  35. Thai HT, Choi DH (2013) A simple first-order shear deformation theory for laminated composite plates. Compos Struct 106:754e763

    Article  Google Scholar 

  36. Thai HT, Choi DH (2013) A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates. Compos Struct 101:332e340

    Article  Google Scholar 

  37. Yang JS, Batra RC (1995) Free vibration of a linear thermo-piezoelectric body. J Therm stress 18(2):247–262

    Article  Google Scholar 

  38. Jadhav PA, Bajoria Kamal M (2012) Buckling of a piezoelectric functionally graded plate subjected to electro-mechanical loading. Smart Mater Struct 21:105005

    Article  Google Scholar 

  39. Kumar P, Harsha SP (2020) Modal analysis of functionally graded piezoelectric material plates. Mater Today Proc 28:1481–1486

    Article  Google Scholar 

  40. Neves AMA, Ferreira AJM, Carrera E, Roque CMC, Cinefra M, Jorge RMN et al (2013) Aquasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Composites Part B 44:657–674

    Article  Google Scholar 

  41. Reddy JN, Chin CD (1998) Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stresses 21(6):593–626

    Article  Google Scholar 

  42. Kumar P, Harsha SP (2020) Response analysis of hybrid functionally graded material plate subjected to thermo-electro-mechanical loading. Proc Inst Mech Eng L. https://doi.org/10.1177/1464420720980031

    Article  Google Scholar 

  43. Kumar P, Harsha SP (2021) Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load. Compos Struct. https://doi.org/10.1016/j.compstruct.2021.113901

    Article  Google Scholar 

  44. Bergan PG, Clough RW (1972) Convergence criteria of iteration process. AIAA J 10:1107–1108

    Article  Google Scholar 

  45. Bathe KJ (1996) Finite element procedures. Prentic-Hall, New Jersey

    MATH  Google Scholar 

  46. Reddy JN (2009) An introduction to finite element method, 3rd edn. TataMcGraw-Hill Edition, New York

    Google Scholar 

  47. Kumar P, Harsha SP (2022) Static and vibration response analysis of sigmoid function-based functionally graded piezoelectric non-uniform porous plate. J Intell Mater Syst Struct. https://doi.org/10.1177/1045389X221077433

    Article  Google Scholar 

  48. Kumar P, Harsha SP (2021) Vibration response analysis of sigmoidal functionally graded piezoelectric (FGP) porous plate under thermo-electric environment. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2021.1971090

    Article  Google Scholar 

  49. Kumar P, Harsha SP (2021) Vibration response analysis of PZT-4/PZT-5H based functionally graded tapered plate subjected to electro-mechanical loading. Mech Res Commun 116:103765

    Article  Google Scholar 

  50. Sayyad A, Ghumare S (2019) A new quasi-3D model for functionally graded plates. J Appl Comput Mech 5(2):367–380

    Google Scholar 

  51. Akbaş ŞD (2017) Vibration and static analysis of functionally graded porous plates. J Appl Comput Mech. https://doi.org/10.22055/jacm.2017.21540.1107

    Article  Google Scholar 

  52. Akbaş ŞD, Kocatürk T (2013) Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature. J Therm Stresses 36(12):1233–1254

    Article  Google Scholar 

  53. Kocatürk T, Akbaş ŞD (2013) Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties. Steel Compos Struct 15(5):481–505

    Article  Google Scholar 

  54. Vinh PV, Huy LQ (2021) Influence of variable nonlocal parameter and porosity on the free vibration behavior of functionally graded nanoplates. Shock Vib. https://doi.org/10.1155/2021/1219429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Harsha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Harsha, S.P. Static, Buckling and Vibration Response Analysis of Three-Layered Functionally Graded Piezoelectric Plate under Thermo-Electric Mechanical Environment. J. Vib. Eng. Technol. 10, 1561–1598 (2022). https://doi.org/10.1007/s42417-022-00467-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00467-2

Keywords

Navigation