Skip to main content
Log in

Porous Refractory Ceramics for High-Temperature Thermal Insulation - Part 2: The Technology Behind Energy Saving

  • Research and Development
  • Published:
Interceram - International Ceramic Review

Abstract: Porous refractory ceramics combine the high thermomechanical and chemical resistances of oxide-based compounds with the low thermal conductivity and specific heat of porous materials. This two-part study is devoted to understanding and critically reviewing their outstanding behavior as thermal insulators for high-temperature industrial processes (200-2000 °C). The first part (Interceram, v. 70, n. 03, 2021, p. 38-45, "The Science Behind Energy Saving") provided a compilation of updated information on thermal energy consumption per area of human activity and examples of industrial processes that occur in each temperature range. This second part presents classification criteria for insulators established according to their thermomechanical properties, installation method, microstructure, and temperature at use, analyses of some important grades of porous insulators, and the most common causes of premature failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Nettleship, I. Applications of porous ceramics (1996) Key Engineering Materials, (122-124), pp. 305-324.

  2. Ohji, T., Fukushima, M. Macro-porous ceramics: Processing and properties (2012) International Materials Reviews, 57 (2), pp. 115-131. DOI: 10.1179/1743280411Y.0000000006

  3. Hammel, E.C., Ighodaro, O.L.-R., Okoli, O.I. Processing and properties of advanced porous ceramics: An application based review (2014) Ceramics International, 40 (10), pp. 15351-15370. DOI: 10.1016/j.ceramint.2014.06.095

  4. ASTM International. C168-19 Standard Terminology Relating to Thermal Insulation. West Conshohocken, PA; ASTM International, 2019.DOI: https://doi.org/10.1520/C0168-19

  5. Salomão, R., Oliveira, K.S., Fernandes, L., Tiba, P., Prado, U.S. Porous refractory ceramics for high-temperature thermal insulation - Part 1: The science behind energy saving. (2021) Interceram: International Ceramic Review, 70 (3), pp. 38-45.

  6. Litovsky, E., Shapiro, M., Shavit, A. Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: Part 2, refractories and ceramics with porosity exceeding 30% (1996) Journal of the American Ceramic Society, 79 (5), pp. 1366-1376. DOI: 10.1111/j.1151-2916.1996.tb08598.x

  7. Braginsky, L., Shklover, V., Hofmann, H., Bowen, P. High-temperature thermal conductivity of porous Al2O3 nanostructures (2004) Physical Review B - Condensed Matter and Materials Physics, 70 (13), art. no. 134201, pp. 134201-1-134201-7. DOI: 10.1103/PhysRevB.70.134201

  8. Tychanicz-Kwiecień, M., Wilk, J., Gil, P. Review of high-temperature thermal insulation materials (2019) Journal of Thermophysics and Heat Transfer, 33 (1), pp. 271-284. DOI: 10.2514/1.T5420

  9. Horie, E. Ceramic fiber insulation theory and practice (1987) The Eibun Press Ltd, Osaka, Japan 25-87.

  10. Spirina, V.S., Flerova, M.I. Expanded vermiculite as heat insulation material (1975) Refractories, 16 (3-4), pp. 201-203. DOI: 10.1007/BF01661229

  11. Qin, M.L., Wang, X.T., Wang, Z.F., Ma, Y., Liu, H. Cordierite thermal insulation materials reinforced by aluminosilicate fiber/mullite whiskers hierarchical structure (2018) International Journal of Applied Ceramic Technology, 15 (4), pp. 1047-1053. DOI: 10.1111/ijac.12867

  12. Zheng, Q., Wang, W. Calcium silicate based high efficiency thermal insulation (2000) British Ceramic Transactions, 99 (4), pp. 187-190. DOI: 10.1179/096797800680929

  13. Sousa, L.L., Souza, A.D.V., Fernandes, L., Arantes, V.L., Salomão, R. Development of densification-resistant castable porous structures from in situ mullite (2015) Ceramics International, 41 (8), art. no. 10407, pp. 9443-9454. DOI: 10.1016/j.ceramint.2015.03.328

  14. Sousa, L.L., Salomão, R., Arantes, V.L. Development and characterization of porous moldable refractory structures of the alumina-mullite-quartz system (2017) Ceramics International, 43 (1), pp. 1362-1370. DOI: 10.1016/j.ceramint.2016.10.093

  15. Zhou, W., Yan, W., Li, N., Li, Y., Dai, Y., Zhang, Z., Ma, S. Fabrication of mullite-corundum foamed ceramics for thermal insulation and effect of micro-pore-foaming agent on their properties (2019) Journal of Alloys and Compounds, 785, pp. 1030-1037. DOI: 10.1016/j.jallcom.2019.01.212

  16. Akhtar, F., Rehman, Y., Bergström, L. A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength (2010) Powder Technology, 201 (3), pp. 253-257. DOI: 10.1016/j.powtec.2010.04.004

  17. Yan, W., Chen, J., Li, N., Qiu, W., Wei, Y., Han, B. Preparation and characterization of porous MgO-Al2O3 refractory aggregates using an in-situ decomposition pore-forming technique (2015) Ceramics International, 41 (1), pp. 515-520. DOI: 10.1016/j.ceramint.2014.08.099

  18. Salomão, R., Arruda, C.C., Pandolfelli, V.C., Fernandes, L. Designing high-temperature thermal insulators based on densification-resistant in situ porous spinel (2021) Journal of the European Ceramic Society, 41 (4), pp. 2923-2937. DOI: 10.1016/j.jeurceramsoc.2020.12.014

  19. Overhoff, A., Buhr, A., Grass, J., Wuthnow, H.M. New Microporous Materials (2005) Ceramic Forum International, 82 (8), pp. 1-5.

  20. Salomão, R., Ferreira, V.L., Costa, L.M.M., de Oliveira, I.R. Effects of the initial CaO-Al2O3 ratio on the microstructure development and mechanical properties of porous calcium hexaluminate (2018) Ceramics International, 44 (2), pp. 2626-2631. DOI: 10.1016/j.ceramint.2017.11.010

  21. Costa, L.M.M., Sakihama, J., Salomão, R. Characterization of porous calcium hexaluminate ceramics produced from calcined alumina and microspheres of Vaterite (μ-CaCO3) (2018) Journal of the European Ceramic Society, 38 (15), pp. 5208-5218. DOI: 10.1016/j.jeurceramsoc.2018.07.034

  22. Deng, Z.-Y., Fukasawa, T., Ando, M., Zhang, G.-J., Ohji, T. Microstructure and Mechanical Properties of Porous Alumina Ceramics Fabricated by the Decomposition of Aluminum Hydroxide (2001) Journal of the American Ceramic Society, 84 (11), pp. 2638-2644. DOI: 10.1111/j.1151-2916.2001.tb01065.x

  23. Souza, A.D.V., Sousa, L.L., Fernandes, L., Cardoso, P.H.L., Salomão, R. Al2O3-Al(OH)3-Based castable porous structures (2015) Journal of the European Ceramic Society, 35 (6), pp. 1943-1954. DOI: 10.1016/j.jeurceramsoc.2015.01.003

  24. Toberer, E.S., Baranowski, L.L., Dames, C. Advances in thermal conductivity (2012) Annual Review of Materials Research, 42, pp. 179-209. DOI: 10.1146/annurev-matsci-070511-155040.

  25. Smith, D.S., Alzina, A., Bourret, J., Nait-Ali, B., Pennec, F., Tessier-Doyen, N., Otsu, K., Matsubara, H., Elser, P., Gonzenbach, U.T. Thermal conductivity of porous materials (2013) Journal of Materials Research, 28 (17), pp. 2260-2272. DOI: 10.1557/jmr.2013.179

  26. Sako, E.Y., Orsolini, H.D., Moreira, M., de Meo, C.E., Pelissari, P.I.B.G.B., Salvini, V.R., Pandolfelli, V.C. Review: Thermal ceramic coatings as energy saving alternatives for high temperature processes (2020) International Journal of Applied Ceramic Technology, 17 (6), pp. 2492-2508. DOI: 10.1111/ijac.13606

  27. Modest, M.F. Radiative heat transfer (2003) 2nd Edition, Academic Press, USA 58-149.

  28. Tritt, T. Thermal conductivity: theory, properties, and applications (2004) 1st Edition, Kluwer Academic, New York, USA 80-156.

  29. Rathakrishnan E. Elements of Heat Transfer (2012) 1st Edition, Taylor & Francis Group, 45-91.

  30. Le, V.T., Ha, N.S., Goo, N.S., Kim, J.Y. Insulation System Using High-Temperature Fibrous Insulation Materials (2019) Heat Transfer Engineering, 40 (17-18), pp. 1523-1538. DOI: 10.1080/01457632.2018.1474602

  31. Nishikawa, A. Technology of monolithic refractories (1984) Plibrico Japan Company Limited, 183-289.

  32. Surendranathan, A.O. An introduction to ceramics and refractories (2015) CRC Press, Boca Raton, 309-390.

  33. Pirogov, Yu.A., Vishnevskii, I.I., Babkina, L.A., Aksel'rod, E.I. Thermal insulation gunited coatings of mullite-silica roll material (1985) Refractories, 26 (3-4), pp. 125-129. DOI: 10.1007/BF01387409

  34. Levina, I.A., Kovalev, M.N. Use of mullite-silica material-base fiber thermal insulation in an electric vacuum furnace (1986) Refractories, 27 (11-12), pp. 702-704. DOI: 10.1007/BF01387233

  35. Bol'shakova, N.V., Levina, I.A., Tsimberova, R.Yu. Possible application of mullite-silica fibrous materials for thermal insulation of vacuum electric furnaces (1987) Refractories, 28 (7-8), pp. 374-379. DOI: 10.1007/BF01400026

  36. Van Garsel, D., Buhr, A., Gnauck, V. Long term high temperature stability of microporous calcium hexaluminate based insulating materials (1998) Proceedings of 42nd International Colloquium on Refractories, Aachen, Germany 122-128.

  37. Pimraksa, K., Chindaprasirt, P. Lightweight bricks made of diatomaceous earth, lime and gypsum (2009) Ceramics International, 35 (1), pp. 471-478. DOI: 10.1016/j.ceramint.2008.01.013

  38. Ebert, H.-P., Hemberger, F. Intercomparison of thermal conductivity measurements on a calcium silicate insulation material (2011) International Journal of Thermal Sciences, 50 (10), pp. 1838-1844. DOI: 10.1016/j.ijthermalsci.2011.05.007

  39. Shimizu, T., Matsuura, K., Furue, H., Matsuzak, K. Thermal conductivity of high porosity alumina refractory bricks made by a slurry gelation and foaming method (2013) Journal of the European Ceramic Society, 33 (15-16), pp. 3429-3435. DOI: 10.1016/j.jeurceramsoc.2013.07.001

  40. Koronthalyova, O., Matiasovsky, P. Thermal Conductivity of Fibre Reinforced Porous Calcium Silicate Hydrate-based Composites (2003) Journal of Building Physics, 27 (1), pp. 71-89. DOI: 10.1177/1097196303027001005

  41. Li, M., Chen, Y. Relation of density and thermal conductivity of micro-porous calcium silicate insulation material (2005) Kuei Suan Jen Hsueh Pao/ Journal of the Chinese Ceramic Society, 33 (11), pp. 1414-1417.

  42. Salvini, V.R., Luz, A.P., Pandolfelli, V.C. High temperature Al2O3-CA6 insulating foamed ceramics: Processing and properties (2012) InterCeram: International Ceramic Review, 61 (6), pp. 335-339.

  43. Xu, L., Jiang, Y., Feng, J., Feng, J., Yue, C. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations (2015) Ceramics International, 41 (1), pp. 437-442. DOI: 10.1016/j.ceramint.2014.08.088

  44. De Wit, T., Lorenz, W., Pörzgen, D., Specht, M., Buhr, A. Innovative ceramic fiber free steel ladle pre-heaters at CORUS Steelworks IJmuiden (2001) Proceedings of 44th Colloquium on Refractories, Aachen, Germany 108-112.

  45. Tassot, P., Bachman, E., Johnson, R.C. Influence of reducing atmospheres on monolithic refractory linings for petrochemical service (2001) Proceedings of Unified International Technical Conference on Refractories (UNITECR'01) Cancun, Mexico 858-871.

  46. Wuthnow, H., Pötschke, J., Buhr, A., Bosselmann, D., Gerharz, N., Golder, P., Grass, J. Experiences with microporous calcium hexaluminate insulating materials in steel reheating furnaces at Hoesch Hohenlimburg and Thyssen Krupp Stahl AG Bochum (2004) Proceeding of 47th Colloquium on Refractories, Aachen, Germany 198-204.

  47. Souza, A.D.V., Salomão, R. Evaluation of the porogenic behavior of aluminum hydroxide particles of different size distributions in castable high-alumina structures (2016) Journal of the European Ceramic Society, 36 (3), pp. 885-897. DOI: 10.1016/j.jeurceramsoc.2015.11.019

  48. de Mendonça Spera, N.C., Fernandes, L., Sakihama, J., Santos Martinatti, I., Tiba, P., Salomão, R. Designing Colloidal Silica-Bonded Porous Structures of In-situ Mullite for Thermal Insulation (2020) InterCeram: International Ceramic Review, 69 (4-5), pp. 54-63. DOI: 10.1007/s42411-020-0120-x

  49. Peletskii, V.É., Shur, B.A. Experimental study of the thermal conductivity of heat insulation materials based on expanded vermiculite (2007) Refractories and Industrial Ceramics, 48 (5), pp. 356-358. DOI: 10.1007/s11148-007-0094-5

  50. Escalera, E., Garcia, G., Terán, R., Tegman, R., Antti, M.-L., Odén, M. The production of porous brick material from diatomaceous earth and Brazil nut shell ash (2015) Construction and Building Materials, 98, pp. 257-264. DOI: 10.1016/j.conbuildmat.2015.08.003

  51. Fukushima, M., Yoshizawa, Y.-I. Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route (2016) Journal of the European Ceramic Society, 36 (12), pp. 2947-2953. DOI: 10.1016/j.jeurceramsoc.2015.09.041

  52. Ge, S., Lin, L., Zhang, H., Bi, Y., Zheng, Y., Li, J., Deng, X., Zhang, S. Synthesis of hierarchically porous mullite ceramics with improved thermal insulation via foam-gelcasting combined with pore former addition (2018) Advances in Applied Ceramics, 117 (8), pp. 493-499. DOI: 10.1080/17436753.2018.1502065

  53. Koronthalyova, O., Matiasovsky, P. Thermal Conductivity of Fibre Reinforced Porous Calcium Silicate Hydrate-based Composites (2003) Journal of Building Physics, 27 (1), pp. 71-89. DOI: 10.1177/1097196303027001005

  54. Liu, H., Yang, Y., Wang, Z., Wang, X., Ma, Y. Enhanced mechanical and thermal insulation properties of mullite-based thermal insulation materials by heat treatment in reducing atmosphere (2021) Journal of the Australian Ceramic Society, 57 (2), pp. 525-532. DOI: 10.1007/s41779-020-00551-4

  55. Xiang, R., Li, Y., Li, S., Xue, Z., Wang, H. Insight into the corrosion failure of mullite thermal insulation materials in carbon monoxide (2021) International Journal of Applied Ceramic Technology, . DOI: 10.1111/ijac.13795

  56. Tikhomirova, I.N., Makarov, A.V., Htet, Z.M. Thermal Insulation Materials Based on Expanded Vermiculite and Foamed Liquid Glass (2020) Refractories and Industrial Ceramics, 61 (4), pp. 451-455. DOI: 10.1007/s11148-020-00501-4

  57. Innocentini, M.D.M., Salomão, R., Ribeiro, C., Cardoso, F.A., Pandolfelli, V.C., Rettore, R.P., Bittencourt, L.R.M. Permeability of fiber-containing refractory castables (2002) American Ceramic Society Bulletin, 81 (8), pp. 65-68.

  58. de Oliveira, I.R., Leite, V.M.C., Lima, M.P.V.P., Salomão, R. Production of porous ceramic material using different sources of alumina and calcia (2015) Revista Materia, 20 (3), pp. 739-746. DOI: 10.1590/S1517-707620150003.0078

  59. Salomão, R. Porogenic Behavior of Water in High-Alumina Castable Structures (2018) Advances in Materials Science and Engineering, 2018, art. no. 2876851, DOI: 10.1155/2018/2876851

  60. Colombo, P. Conventional and novel processing methods for cellular ceramics (2006) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364 (1838), pp. 109-124. DOI: 10.1098/rsta.2005.1683

  61. Tsubaki, T., Goto, Y. Relationship between fundamental properties and fiber content of heat insulators in the vermiculite-fibriform material-phosphate system (1989) Journal of the Society of Materials Science, Japan, 38 (427), pp. 444-450. DOI: 10.2472/jsms.38.444

  62. Salomão, R., Cardoso, P.H., Brandi, J. Gelcasting porous alumina beads of tailored shape and porosity (2014) Ceramics International, 40 (PB), pp. 16595-16601. DOI: 10.1016/j.ceramint.2014.08.017

  63. Salomão, R., Poiani, A.J.B., Costa, L.M.M. Porous beads of in-situ calcium hexaluminate prepared by extrusion-dripping (2019) InterCeram: International Ceramic Review, 68 (3), pp. 40-49. DOI: 10.1007/s42411-019-0006-y

  64. Salomão, R., Brandi, J. Filamentous alumina-chitosan porous structures produced by gelcasting (2013) Ceramics International, 39 (7), pp. 7751-7757. DOI: 10.1016/j.ceramint.2013.03.032

  65. Salomão, R., Brandi, J. Macrostructures with hierarchical porosity produced from alumina-aluminum hydroxide-chitosan wet-spun fibers (2013) Ceramics International, 39 (7), pp. 8227-8235. DOI: 10.1016/j.ceramint.2013.04.007

  66. Kockegey-Lorenz, R., Buhr, A., Racher, R.P. Industrial application experiences with microporous calcium hexaluminate insulating material SLA-92 (2005) Proceedings of 48th International Colloquium on Refractories, Aachen, Germany 66-70.

  67. Brooks, A.L., Shen, Z., Zhou, H. Development of a high-temperature inorganic synthetic foam with recycled fly-ash cenospheres for thermal insulation brick manufacturing (2020) Journal of Cleaner Production, 246, art. no. 118748. DOI: 10.1016/j.jclepro.2019.118748

  68. Lightweight Refractory Can Improve Kiln Insulation Performance and Fuel Efficiency. Interceram. - Int. Ceram. Rev. 69, 16-19 (2020). https://doi.org/10.1007/s42411-020-0108-6

  69. Vivaldini, D.O., Mourão, A.A.C., Salvini, V.R., Pandolfelli, V.C. Review: Fundamentals and materials for the microstructure design of high performance refractory thermal insulating (2014) Cerâmica, 60 (354), pp. 297-309. DOI: 10.1590/S0366-69132014000200021

  70. Coquard, R., Baillis, D., Quenard, D. Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators (2006) International Journal of Heat and Mass Transfer, 49 (23-24), pp. 4511-4524. DOI: 10.1016/j.ijheatmasstransfer.2006.05.016

  71. Bol'shakova, N.V., Levina, I.A., Tsimberova, R.Yu. Possible application of mullite-silica fibrous materials for thermal insulation of vacuum electric furnaces (1987) Refractories, 28 (7-8), pp. 374-379. DOI: 10.1007/BF01400026

  72. Park, S.-H. Types and Health Hazards of Fibrous Materials Used as Asbestos Substitutes (2018) Safety and Health at Work, 9 (3), pp. 360-364. DOI: 10.1016/j.shaw.2018.05.001

  73. Coble, R.L., Kingery, W.D. Effect of Porosity on Physical Properties of Sintered Alumina (1956) Journal of the American Ceramic Society, 39 (11), pp. 377-385. DOI: 10.1111/j.1151-2916.1956.tb15608.x

  74. Salomão, R., Fernandes, L. Porous co-continuous mullite structures obtained from sintered aluminum hydroxide and synthetic amorphous silica (2017) Journal of the European Ceramic Society, 37 (8), pp. 2849-2856. DOI: 10.1016/j.jeurceramsoc.2017.03.017

  75. Du, X., Zhao, L., He, X., Wang, X., Qu, W., Chen, H., Chen, H., Wang, J., Lei, Z. A novel method based on ultrastable foam and improved gelcasting for fabricating porous mullite ceramics with thermal insulation-mechanical property trade-off (2016) Journal of Porous Materials, 23 (2), pp. 381-388. DOI: 10.1007/s10934-015-0091-x

  76. Wang, Z., Feng, P., Geng, P., Xu, C., Akhtar, F. Porous mullite thermal insulators from coal gangue fabricated by a starch-based foam gel-casting method (2017) Journal of the Australian Ceramic Society, 53 (2), pp. 287-291. DOI: 10.1007/s41779-017-0035-9

  77. Borges, O.H., Santos, T., Jr, Salvini, V.R., Pandolfelli, V.C. CA6-based macroporous refractory thermal insulators containing mineralizing agents (2020) Journal of the European Ceramic Society, 40 (15), pp. 6141-6148. DOI: 10.1016/j.jeurceramsoc.2020.07.011

  78. Liu, H., Xiong, X., Li, M., Wang, Z., Wang, X., Ma, Y., Yuan, L. Fabrication and properties of mullite thermal insulation materials with in-situ synthesized mullite hollow whiskers (2020) Ceramics International, 46 (10), pp. 14474-14480. DOI: 10.1016/j.ceramint.2020.02.245

  79. Zacherl, D., Schnabel, M., Buhr, A., Büchel, G., Kockegey-Lorenz, R., Dutton, J. Advantages of calcium hexaluminate in a corrosive environment (2011) Materials Science and Technology Conference and Exhibition 2011, MS and T'11, 1, pp. 76-86.

  80. Schlegel, E., Hölscher, T., Schneider, H.-J., Aneziris, C.G. Alkali salt corrosion of calcium silicate thermal insulation materials (2015) InterCeram: International Ceramic Review, 64 (4), pp. 188-192. DOI: 10.1007/bf03401121

  81. Ordonez-Miranda, J., Alvarado-Gil, J.J. Effect of the pore shape on the thermal conductivity of porous media (2012) Journal of Materials Science, 47 (18), pp. 6733-6740. DOI: 10.1007/s10853-012-6616-7

  82. Petrov, V.A. Combined radiation and conduction heat transfer in high temperature fiber thermal insulation (1997) International Journal of Heat and Mass Transfer, 40 (9), pp. 2241-2247. DOI: 10.1016/S0017-9310(96)00242-6

  83. Luz, A.P., Salomão, R., Bitencourt, C.S., Renda, C.G., Lucas, A.A., Aneziris, C.G., Pandolfelli, V.C. Thermosetting resins for carbon-containing refractories: Theoretical basis and novel insights (2020) Open Ceramics, 3, art. no. 100025, . DOI: 10.1016/j.oceram.2020.100025

  84. Shmuradko, V.T., Panteleenko, F.I., Reut, O.P., Panteleenko, E.F., Kirshina, N.V. Composition, structure, and property formation of heat insulation fire- and heat-reflecting materials based on vermiculite for industrial power generation (2012) Refractories and Industrial Ceramics, 53 (4), pp. 254-258. DOI: 10.1007/s11148-012-9503-5

  85. Suvorov, S.A., Skurikhin, V.V. Vermiculite - A promising material for high-temperature heat insulators (2003) Refractories and Industrial Ceramics, 44 (3), pp. 186-193. DOI: 10.1023/A:1026312619843

  86. Saravanapavan, P., Hench, L.L. Mesoporous calcium silicate glasses. I. Synthesis (2003) Journal of Non-Crystalline Solids, 318 (1-2), pp. 1-13. DOI: 10.1016/S0022-3093(02)01864-1

  87. Nonat, A. The structure and stoichiometry of C-S-H (2004) Cement and Concrete Research, 34 (9), pp. 1521-1528. DOI: 10.1016/j.cemconres.2004.04.035

  88. Xu, S., Lin, K., Wang, Z., Chang, J., Wang, L., Lu, J., Ning, C. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics (2008) Biomaterials, 29 (17), pp. 2588-2596. DOI: 10.1016/j.biomaterials.2008.03.013

  89. Li, H., Chang, J. Stimulation of proangiogenesis by calcium silicate bioactive ceramic (2013) Acta Biomaterialia, 9 (2), pp. 5379-5389. DOI: 10.1016/j.actbio.2012.10.019

  90. Fujiwara, M., Shiokawa, K., Sakakura, I., Nakahara, Y. Silica hollow spheres with nano-macroholes like diatomaceous earth (2006) Nano Letters, 6 (12), pp. 2925-2928. DOI: 10.1021/nl062298i

  91. Schneider, H., Schreuer, J., Hildmann, B. Structure and properties of mullite-A review (2008) Journal of the European Ceramic Society, 28 (2), pp. 329-344. DOI: 10.1016/j.jeurceramsoc.2007.03.017

  92. Fernandes, L., Salomão, R. Preparation and characterization of mullite-alumina structures formed "in situ" from calcined alumina and different grades of synthetic amorphous silica (2018) Materials Research, 21 (3), art. no. e20170783, DOI: 10.1590/1980-5373-MR-2017-0783

  93. Sepulveda, Pilar, dos Santos, Wilson N., Pandolfelli, Victor C., Bressiani, Jose C., Taylor, Roy Thermal conductivity of gelcast porous alumina (1999) American Ceramic Society Bulletin, 78 (2), pp. 61-66.

  94. Salvini, V.R., Lasso, P.R.O., Luz, A.P., Pandolfelli, V.C. Nontoxic Processing of Reliable Macro-Porous Ceramics (2016) International Journal of Applied Ceramic Technology, 13 (3), pp. 522-531. DOI: 10.1111/ijac.12521

  95. Finhana, I.C., Machado, V.V.S., Santos, T., Jr., Borges, O.H., Salvini, V.R., Pandolfelli, V.C. Direct foaming of macroporous ceramics containing colloidal alumina (2021) Ceramics International, 47 (11), pp. 15237-15244. DOI: 10.1016/j.ceramint.2021.02.086

  96. Noda, N. Thermal stresses in functionally graded materials (1999) Journal of Thermal Stresses, 22 (4-5), pp. 477-512. DOI: 10.1080/014957399280841

  97. Naebe, M., Shirvanimoghaddam, K. Functionally graded materials: A review of fabrication and properties (2016) Applied Materials Today, 5, pp. 223-245. DOI: 10.1016/j.apmt.2016.10.001

  98. Costantini, M., Jaroszewicz, J., Kozoń, Ł., Szlązak, K., Święszkowski, W., Garstecki, P., Stubenrauch, C., Barbetta, A., Guzowski, J. 3D-Printing of Functionally Graded Porous Materials Using On-Demand Reconfigurable Microfluidics (2019) Angewandte Chemie - International Edition, 58 (23), pp. 7620-7625. DOI: 10.1002/anie.201900530

  99. Chevalier, Y. New surfactants: New chemical functions and molecular architectures (2002) Current Opinion in Colloid and Interface Science, 7 (1-2), pp. 3-11. DOI: 10.1016/S1359-0294(02)00006-7

  100. Sharma, R., Kamal, A., Abdinejad, M., Mahajan, R.K., Kraatz, H.-B. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants (2017) Advances in Colloid and Interface Science, 248, pp. 35-68. DOI: 10.1016/j.cis.2017.07.032

  101. Huang, Y., Guo, M., Tan, J., Feng, S. Impact of Molecular Architecture on Surface Properties and Aqueous Stabilities of Silicone-Based Carboxylate Surfactants (2020) Langmuir, 36 (8), pp. 2023-2029. DOI: 10.1021/acs.langmuir.9b03653

  102. Zhou, W., Yan, W., Li, N., Li, Y., Schafföner, S., Dai, Y., Zhang, Z., Yuan, L. Fabrication, characterization and thermal-insulation modeling of foamed mullite-SiC ceramics (2020) Journal of Alloys and Compounds, 829, art. no. 154523,. DOI: 10.1016/j.jallcom.2020.154523

  103. Bi, Z. Finite element analysis applications (2018) 1st Edition, Academic Press, New York, 341-377.

Download references

Acknowledgements

The authors acknowledge Brazilian Research Foundations FAPESP (2010-19274-5; 2017/06738-2; 2018/19773-3) and CNPq (305877/2017-8; 304081/2020-5) for supporting this research; and IBAR (Brazil), Skamol (Denmark), Almatis (Brazil and USA) for the samples of thermal insulators supplied. They are also indebted to the Electron Microscopy Laboratory of Advanced Materials Research Support Center (SMM/IFSC) for the SEM images. They declare that no competing interests (financial or personal) affected the results reported in this paper and that they cited all funding and supporting sources.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomão, R., Oliveira, K., Fernandes, L. et al. Porous Refractory Ceramics for High-Temperature Thermal Insulation - Part 2: The Technology Behind Energy Saving. Interceram. - Int. Ceram. Rev. 71, 38–50 (2022). https://doi.org/10.1007/s42411-022-0483-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-022-0483-2

Navigation